K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

Ta có: \(4x-\left(x+y\right)\left(1+\frac{x}{y}\right)=4x-\frac{\left(x+y\right)\left(x+y\right)}{y}\)

\(=\frac{4xy-\left(x+y\right)^2}{y}=\frac{-\left(x-y\right)^2}{y}\le0\) với mọi x; y dương 

Dấu "=" xảy ra <=> x = y.

NV
3 tháng 11 2021

Đặt vế trái là P

Ta có: \(P=\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\right)-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\)

Đặt \(a=\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt[]{\dfrac{xy}{xy}}=2\Rightarrow a-2\ge0\)

\(\Rightarrow P=a^2-3a+2=\left(a-2\right)\left(a-1\right)\ge0\) (đpcm)

Dấu "=" xảy ra khi \(a=2\) hay \(x=y\)

28 tháng 12 2019

Áp dụng BĐT Cô-si, ta có : \(\sqrt{\frac{y+z}{x}.1}\le\frac{\frac{y+z}{x}+1}{2}=\frac{x+y+z}{2x}\)

\(\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\)

Tương tự : ....

Cộng từng vế BĐT, ta được : \(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y+z\\y=x+z\\z=x+y\end{cases}}\Rightarrow x+y+z=0\)( trái với gt ) nên dấu "=" không xảy ra

19 tháng 8 2018

\(x+y-2\left(\sqrt{x}+\sqrt{y}\right)+2\ge0\)

\(\Leftrightarrow x+y-2\sqrt{x}-2\sqrt{y}+2\ge0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\)

Do : \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\end{matrix}\right.\Rightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\)

Vậy đẳng thức được chứng minh !

28 tháng 12 2019

\(\sqrt{\frac{x}{y+z}}=\frac{\sqrt{x}}{\sqrt{y+z}}=\frac{x}{\sqrt{\left(y+z\right)x}}\ge\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)

T.tự:

\(\Rightarrow VT\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)

9 tháng 3 2019

\(-\text{Theo bài ra: }D=\dfrac{x}{2x+y+z}+\dfrac{y}{2y+z+x}+\dfrac{z}{2z+x+y}\)

\(-\text{Đặt }\left\{{}\begin{matrix}a=2x+y+z\\b=2y+z+x\\c=2z+x+y\end{matrix}\right.\Rightarrow a+b+c=4\left(x+y+z\right)\)

\(\Rightarrow a-\dfrac{a+b+c}{4}=x\)

\(\Rightarrow x=\dfrac{3a-b-c}{4}\)

\(-\text{Tương tự: }\left\{{}\begin{matrix}y=\dfrac{3b-c-a}{4}\\z=\dfrac{3c-a-b}{4}\end{matrix}\right.\)

Suy ra \(D=\dfrac{3a-b-c}{4a}+\dfrac{3b-3c-a}{4b}+\dfrac{3c-a-b}{4c}\)

\(D=\dfrac{9}{4}-\left(\dfrac{b}{4a}+\dfrac{c}{4a}+\dfrac{c}{4b}+\dfrac{a}{4b}+\dfrac{a}{4c}+\dfrac{b}{4c}\right)\)

\(D=\dfrac{9}{4}-\dfrac{1}{4}\left[\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\right]\)

- Theo bất đẳng thức Cosi, ta có: \(\left\{{}\begin{matrix}\dfrac{b}{a}+\dfrac{a}{b}\ge2\\\dfrac{c}{a}+\dfrac{a}{b}\ge2\\\dfrac{c}{b}+\dfrac{b}{c}\ge2\end{matrix}\right.\)

Suy ra \( D\le\dfrac{9}{4}-\dfrac{1}{4}.6=\dfrac{9}{4}-\dfrac{6}{4}=\dfrac{3}{4}\)

Vậy \(D\le\dfrac{3}{4}\left(đpcm\right)\)

5 tháng 1 2018

Ta có\(\dfrac{x}{x+y}>\dfrac{x}{x+y+z}\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{y}{y+z}>\dfrac{y}{x+y+z}\\\dfrac{z}{z+x}>\dfrac{z}{x+y+z}\end{matrix}\right.\)

Cộng theo vế ta được: \(\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}>\dfrac{x+y+z}{x+y+z}=1\left(đpcm\right)\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

30 tháng 10 2021

B3 : t chỉ m r á :3
B4 : 
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
   = 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
   = 4 ( x2 + xy + xz ) ( x+ xy + xz + yz ) + y2x2
Đặt a = x+ xy + xz và b= yz , ta có :
  ⇒ C = 4a( a + b ) + b2
          = b2 + 4ab + 4a2
          = ( b + a )2
  ⇒ C là số chính phương 
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!yeu