Tính :
A = 10/1x2 + 10/2x3 + 10/3x4 + ............... + 10/98x99 + 10/99x100
Ai tính nhanh giúp mình nhé mình tk cho
Mình cần gấp
Nhớ vào trang cá nhân để kb nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 10/1x2 + 10/2x3 + 10/3x4 +........ + 10/98x99 + 10/99x100
A=10x(1/1x2+1/2x3+1/3x4+..+1/98x99+1/99x100)
A= 10x( 1-1/2+1/2-1/3+1/3-1/4+..+1/99-1/100)
A=10x( 1-1/100)
A=10x99/100
A=99/10
A = đề
A=10x(1/1x2+1/2x3+1/3x4+..+1/98x99+1/99x100)
A= 10x( 1-1/2+1/2-1/3+1/3-1/4+..+1/99-1/100)
A=10x( 1-1/100)
A=10x99/100
A=99/10
A = 1×2 + 2×3 + 3×4 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + 3×4×(5-2) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + 3×4×5 - 2×3×4 + ... + 98×99×100 - 97×98×99
3A = 98×99×100
A = 98×33×100
A = 323400
2) Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
Ta có:
102012 + 1/102013 + 1 < 102012 + 1 + 9/102013 + 1 + 9
< 102012 + 10/102013 + 10
< 10.(102011 + 1)/10.(102012 + 1)
< 102011 + 1/102012 + 1
Vào lúc: 2016-07-17 13:22:30 Xem câu hỏi
1) A = 1×2 + 2×3 + 3×4 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + 3×4×(5-2) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + 3×4×5 - 2×3×4 + ... + 98×99×100 - 97×98×99
3A = 98×99×100
A = 98×33×100
A = 323400
2) Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
Ta có:
102012 + 1/102013 + 1 < 102012 + 1 + 9/102013 + 1 + 9
< 102012 + 10/102013 + 10
< 10.(102011 + 1)/10.(102012 + 1)
< 102011 + 1/102012 + 1
=1x2x3+2x3x3+...+98x99x3
=1x2x3+2x3x(4-1)+...+98x99x(100-97)
=1x2x3+2x3x4-1x2x3+...+98x99x100-97x98x99
=98x99x100
=970200
\(\frac{1}{1x2}+\frac{1}{1x3}+...+\frac{1}{999x1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
1/1x2+1/2x3+1/3x4+...+1/999x1000
=1-1/2+1/2-1/3+1/3-1/4+...+1/999-1/1000
=1-1/1000
=1000/1000-1/1000
=999/1000
\(4\frac{1}{10}+4\frac{2}{10}+4\frac{3}{10}+4\frac{4}{10}\)
= \((4+4+4+4)+(\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+\frac{4}{10})\)
= \(4\times4+\frac{1}{10}(1+2+3+4)\)
= \(16+\frac{1}{10}.10\)
= \(16+1=17\)
\(A=\frac{1.98+2.97+3.96+...+98.1}{1.2+2.3+3.4+...+98.99}=\frac{1.\left(100-2\right)+2\left(100-3\right)+3\left(100-4\right)+...+98\left(100-99\right)}{1.2+2.3+3.4+...+98.99}\)
\(A=\frac{1.100-1.2+2.100-2.3+3.100-3.4+...+98.100-98.99}{1.2+2.3+3.4+...+98.99}\)
\(A=\frac{\left(1.100+2.100+3.100+...+98.100\right)-\left(1.2+2.3+3.4+...+98.99\right)}{1.2+2.3+3.4+...+98.99}\)
\(A=\frac{100\left(1+2+3+...+98\right)}{1.2+2.3+3.4+...+98.99}-1\)
Ta có: 1+2+3+...+98=98.99:2=4851
Đặt B=1.2+2.3+3.4+...+98.99 => 3B=1.2.3+2.3.3+3.4.3+...+98.99.3 = 1.2.3+2.3.(4-1)+3.4(5-2)+...+98.99(100-97)
=> 3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99 = 98.99.100
=> B=33.98.100. Thay vào A được:
\(A=\frac{100.4851}{33.98.100}-1=\frac{3}{2}-1=\frac{1}{2}\)
=5(x1/1x2 + 1/2x3 +... +1/99x100)
= 5 x( 1/1 - 1/2 +1/2 -1/3 +... +1/99 -1/100)
= 5 x( 1 /1- 1/100)
= 5 x99/100
= 99/ 20
\(A=\frac{10}{1\cdot2}+\frac{10}{2\cdot3}+\frac{10}{3\cdot4}+...+\frac{10}{98\cdot99}+\frac{10}{99\cdot100}\)
\(A=\frac{10}{1}-\frac{10}{2}+\frac{10}{2}-\frac{10}{3}+\frac{10}{3}-\frac{10}{4}+...+\frac{10}{99}-\frac{10}{100}\)
\(A=\frac{10}{1}-\frac{10}{100}\)
\(A=\frac{99}{10}\)
Không chắc nhá
\(A=\frac{10}{1\cdot2}+\frac{10}{2\cdot3}+\frac{10}{3\cdot4}+....+\frac{10}{98\cdot99}+\frac{10}{99\cdot100}\)
\(A=10\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)
\(A=10\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=10\left(1-\frac{1}{100}\right)=10\cdot\frac{99}{100}=\frac{99}{10}\)