1/x.(x+7)=0
2/(x+12).(x-3)=0
3/(-x+5).(3-x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.(x+2)(x-3)=0
\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)
=> x = 3 hoặc x = -2
2,(x-5)(7-x)=0
=>\(\left[{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\)
=> x = 5 hoặc x = 7
3.(2x + 3)(-x + 7)=0
=>\(\left[{}\begin{matrix}2x+3=0\\-x+7=0\end{matrix}\right.\)
=> x = -3/2 hoặc x = 7.
4.(-10x + 5 )(2x-8)=0
=>\(\left[{}\begin{matrix}-10x+5=0\\2x-8=0\end{matrix}\right.\)
=> x = 1/2 hoặc x=4
5.(x-1)(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+2=0\\x-3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=-2\\x=3\end{matrix}\right.\)
Em ơi, với mấy bài có tích bằng 0 như này ta chỉ cần đặt từng trường hợp cho thừa số chứa biến x bằng 0; rồi giải phép tính là ra em nhé!
Mà cô có thắc mắc là đây là môn Toán, mình up lên môn Toán chứ sao lại môn Tiếng Anh bạn Kim nhỉ!
1/ x2-3x+2=0
⇒ (x2-2x)-(x-2)=0
⇒ x(x-2)-(x-2)=0
⇒ (x-1)(x-2)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2) x2-6x+5=0
⇒x2-6x+9-4=0
⇒(x2-6x+9)-22=0
⇒(x-3)2-22=0
⇒(x-3-2)(x-3+2)=0
⇒(x-5)(x-1)=0
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3) 2x2+5x+3=0
⇒ (2x2+2x)+(3x+3)=0
⇒ 2x(x+1)+3(x+1)=0
⇒ (x+1)(2x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-1,5\end{matrix}\right.\)
4) x2-8x+15=0
⇒ (x2-8x+16)-1=0
⇒ (x-4)2-12=0
⇒ (x-4-1)(x-4+1)=0
⇒ (x-5)(x-3)=0
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5) x2-x-12=0
⇒ (x2-4x)+(3x-12)=0
⇒ x(x-4)+3(x-4)=0
⇒ (x-4)(x+3)=0
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
1: Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: Ta có: \(x^2-6x+5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
3: Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
4: Ta có: \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
5: Ta có: \(x^2-x-12=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
1) Ta có: \(\left(-5+x\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-5+x=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)
Vậy: \(x\in\left\{5;7\right\}\)
2) Ta có: \(\left(30-x\right)\left(2x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}30-x=0\\2x-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-30\\2x=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\\x=8\end{matrix}\right.\)
Vậy: \(x\in\left\{30;8\right\}\)
3) Ta có: \(\left(-5-x\right)\left(17+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-5-x=0\\17+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=5\\x=0-17\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-17\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;-17\right\}\)
4) Ta có: \(\left(-3x+18\right)\left(-5x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x+18=0\\-5x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-18\\-5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{6;-2\right\}\)
Bài nay ta có hai vế bạn hãy đặt giả sử một trong hai vế bằng 0 rồi giải phương trình cho mỗi vế bằng o
1.
\(\left(x-5\right)^2+3\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
2.
\(\left(x^2-9\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
3.
\(\left(2x+1\right)^2+\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right).3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
4.
\(\left(x-1\right)\left(x+3\right)+\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
1) \(\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
2) \(\left(x-2\right)\left(x+15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-15\end{matrix}\right.\)
3) \(\left(7-x\right)\left(x+19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-x=0\\x+19=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-19\end{matrix}\right.\)
4) \(-5< x< 1\)
\(\Rightarrow x\in\left\{-1;-3;-2;-1;0\right\}\)
5) \(\left(x-3\right)\left(x-5\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}x-3>0\\x-5< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>3\\x< 5\end{matrix}\right.\)
\(\Rightarrow3< x< 5\)
6) \(2x^2-3=29\)
\(\Rightarrow2x^2=29+3\)
\(\Rightarrow2x^2=32\)
\(\Rightarrow x^2=\dfrac{32}{2}\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
7) \(-6x-\left(-7\right)=25\)
\(\Rightarrow-6x+7=25\)
\(\Rightarrow-6x=25-7\)
\(\Rightarrow-6x=18\)
\(\Rightarrow x=\dfrac{18}{-6}\)
\(\Rightarrow x=-3\)
8) \(46-\left(x-11\right)=-48\)
\(\Rightarrow x-11=48+46\)
\(\Rightarrow x-11=94\)
\(\Rightarrow x=94+11\)
\(\Rightarrow x=105\)
1: (x-2)(x+4)=0
=>x-2=0 hoặc x+4=0
=>x=2 hoặc x=-4
2: (x-2)(x+15)=0
=>x-2=0 hoặc x+15=0
=>x=2 hoặc x=-15
3: (7-x)(x+19)=0
=>7-x=0 hoặc x+19=0
=>x=7 hoặc x=-19
4: -5<x<1
=>\(x\in\left\{-4;-3;-2;-1;0\right\}\)
5: (x-3)(x-5)<0
=>x-3>0 và x-5<0
=>3<x<5
6: 2x^2-3=29
=>2x^2=32
=>x^2=16
=>x=4 hoặc x=-4
7: -6x-(-7)=25
=>-6x=25-7=18
=>x=-3
8: 46-(x-11)=-48
=>x-11=46+48=94
=>x=94+11=105
1, \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[x+2-\left(x-1\right)\right]=0\)
\(\Leftrightarrow3\left(x-1\right)=0\Leftrightarrow x=1\)
2, \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x-2-3\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\Leftrightarrow x=-\dfrac{5}{2};x=2\)
3, \(\left(5-2x\right)\left(2x+7\right)=4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+2x+5\right)=0\Leftrightarrow\left(4x+12\right)\left(5-2x\right)=0\Leftrightarrow x=-3;x=\dfrac{5}{2}\)
1) Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2-x+1\right)=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
2) Ta có: \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-3x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-5}{2}\end{matrix}\right.\)
1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)
\(\Leftrightarrow2x^2+6x-6x+18=0\)
\(\Leftrightarrow2x^2+18=0\left(loại\right)\)
2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
4: Ta có: \(2x\left(x-5\right)-3x+15=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
5: Ta có: \(3x\left(x+4\right)-2x-8=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
2: =>(x+1)(x-2)<0
=>-1<x<2
3: =>2x+1>0 hoặc x+5<0
=>x>-1/2 hoặc x<-5
4: =>(x+1)/(x-2)<0
=>-1<x<2
5: =>x+5<0
=>x<-5
1/x.(x+7)=0
x=0 hoặc x+7=0
2/(x+12)(x-3)=0
x+12=0 hoặc x-3=0
=>x=-12 hoặc =>x=3
3/(-x+5)(3-x)=0
-x+5=0 hoặc 3-x=0
=>x=5 hoặc x=3
mik giải giúp bẹn rồi nek
1) x . ( x + 7 ) = 0.
=> x = 0 hoặc x + 7 = 0.
+, x + 7 = 0
x = 0 - 7
x = -7.
Vậy x thuộc { 0; -7 }.
2) ( x + 12 ) . ( x - 3 ) = 0.
=> x + 12 = 0 hoặc x - 3 = 0.
+, x + 12 =0. +, x - 3 = 0.
x = 0 - 12 x = 0 + 3
x = -12. x = 3.
Vậy: x thuộc { -12 ; 3 }.
3) (-x + 5 ) . ( 3 - x ) =0.
=> -x +5 = 0. hoặc 3 - x = 0.
+, -x + 5 = 0. +, 3 - x = 0.
-x = 0 - 5 x = 3 - 0
-x = -5 x = 3.
Vậy: x thuộc { -5 ; 3 }.
#Học tốt.