Tìm nghiệm nguyên của phương trình: x3 = 3y + 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+3y=7 \\ \Leftrightarrow x=\dfrac{-7-3y}{2} \)
PT có nghiệm nguyên \(\Leftrightarrow -7-3y \vdots 2 \\ \Leftrightarrow (-7-3y \in Ư(2) \\ \Leftrightarrow -7-3y \in {-2;2;-1;1} \\ \Leftrightarrow y \in {\dfrac{-5}{3} (L) ; -3(TM); -2(TM) ; \dfrac{-8}{3} (L)} \)
- Với \(y=-3\) có: \(x=1\).
- Với \(y=-2\) có: \(x=\dfrac{-1}{2} (L)\)
Vậy \((x;y)=(-3;1)\) là nghiệm nguyên duy nhất của phương trình.
phân tích pt ta được: \(\left(2x-3\right)\left(7-2y\right)=-35\)
\(\Leftrightarrow4x^2-12xy+12y^2=12y\)
\(\Leftrightarrow\left(2x-3y\right)^2=12y-3y^2\)
Do \(\left(2x-3y\right)^2\ge0;\forall x;y\Rightarrow12y-3y^2\ge0\)
\(\Rightarrow y^2-4y+4\le4\)
\(\Rightarrow\left(y-2\right)^2\le4\)
\(\Rightarrow\left[{}\begin{matrix}\left(y-2\right)^2=0\\\left(y-2\right)^2=1\\\left(y-2\right)^2=4\end{matrix}\right.\) \(\Rightarrow y=\left\{0;1;2;3;4\right\}\)
Lần lượt thế vào pt ban đầu ta được các cặp nghiệm:
\(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(3;1\right);\left(3;3\right);\left(6;3\right);\left(6;4\right)\)
Lời giải:
PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$
$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$
Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$
$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$
$\Leftrightarrow x-5\vdots x^2+2(1)$
$\Rightarrow x^2-5x\vdots x^2+2$
$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$
$\Leftrightarrow 5x+2\vdots x^2+2(2)$
Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$
$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:
$\Rightarrow x^2+2\in\left\{3;9;27\right\}$
$\Rightarrow x^2\in\left\{1;7;25\right\}$
Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$
Thay vào $y$ ta tìm được:
$x=-1\Rightarrow y=-3$
$x=5\Rightarrow y=5$
Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).
Vậy pt vô nghiệm nguyên.
2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).
Ta có: x(x3 - x + 6) > 9
⇔ x4 - x2 + 6x - 9 > 0
⇔ f(x) > 0
thấy f(x) > 0 khi
Vậy tập nghiệm của bất phương trình là
Xét \(y=0\Rightarrow x=\pm8\)
Với \(y\ge1\), ta thấy \(x⋮6\) và \(y⋮2\) (vì nếu \(y\) lẻ thì \(3^y\) chia 4 dư 3, vô lí)
\(x=3k,y=2l\left(k,l\inℤ,l\ge2\right)\) (nếu \(l=1\) thì \(y=2\Rightarrow x^2=72\), vô lí)
pt đã cho trở thành \(k^2=3^{2l-2}+7\)
\(\Leftrightarrow k^2-\left(3^{l-1}\right)^2=7\)
\(\Leftrightarrow\left(k+3^{l-1}\right)\left(k-3^{l-1}\right)=7\)
Do \(k+3^{l-1}>k-3^{l-1}\) nên ta xét 2TH
TH1: \(\left\{{}\begin{matrix}k+3^{l-1}=7\\k-3^{l-1}=1\end{matrix}\right.\). Cộng theo vế \(\Rightarrow2k=8\Rightarrow k=4\Rightarrow x=3k=12\) \(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)
Vậy ta tìm được cặp \(\left(x,y\right)=\left(12,4\right)\), thử lại thấy thỏa mãn.
TH2: \(\left\{{}\begin{matrix}k+3^{l-1}=-1\\k-3^{l-1}=-7\end{matrix}\right.\)
Cộng theo vế \(\Rightarrow2k=-8\Rightarrow k=-4\Rightarrow x=-12\)
\(\Rightarrow3^y=x^2-63=144-63=81\Rightarrow y=4\)
Vậy ta tìm được thêm cặp số \(\left(x;y\right)=\left(-12;4\right)\). Như vậy, pt đã cho có các nghiệm nguyên \(\left(x;y\right)\in\left\{\left(\pm8;0\right);\left(\pm12;4\right)\right\}\)
Giả sử \(x=2\Rightarrow2^3=3^y+7\)
\(\Leftrightarrow8=3^y+7\)
\(\Leftrightarrow3^y=1\Rightarrow y=0\)
Vậy x=2; y=0 là nghiệm của phương trình