Giúp em với ạ
Cho a,b,c dương chứng minh
a2/(b+2c)+b2/(c+2a)+c2/(a+2b)>=(a+b+c)/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bên dưới có giải thích chi tiết rồi đó em:
Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh a2+b2+c2+d2-2ab-2bc-2cd-2da\(\ge\)- \(\frac{1}{4}\) - Hoc24
\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)
\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta thấy muốn loại bỏ đi mẫu số của \(\frac{a^2}{b+2c}\)thì cần dùng AM-GM cho nó và 1 đại lượng có dạng k(b+2c) (để triệt tiêu đi b+2c). Ngoài ra ta cần chú ý thêm BĐT đã cho có dấu "=" xảy ra <=> a=b=c. Khi ấy \(\frac{a^2}{b+2c}=\frac{b+2c}{9}\)
Do vậy, đánh giá mà ta nên chọn là:
\(\frac{a^2}{b+2c}+\frac{b+2c}{9}\ge2\sqrt{\frac{a^2}{b+2c}+\frac{b+2c}{9}}=\frac{2}{3}a\)
=> \(\frac{a^2}{b+2c}\ge\frac{2}{3}a-\frac{b+2c}{9}=\frac{6a-b-2c}{9}\)
Thực hiện đánh giá tương tự ta cũng có:
\(\frac{b^2}{c+2a}\ge\frac{6b-c-2a}{9};\frac{c^2}{a+2b}\ge\frac{6c-a-2b}{9}\)
Cộng theo vế của 3 BĐT ta được đpcm