Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
4 tháng 4 2023
mình viết nhầm câu a là tam giác ABC đồng dạng với tam giác HBA ạ chứ không phải HCA
8 tháng 4 2023
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
3 tháng 5 2021
a, Xét tam giác ABH và tam giác AHE ta có :
^BHA = ^EHA = 900
^A _ chung
Vậy tam giác ABH ~ tam giác AHE ( g.g )
\(\Rightarrow\frac{AH}{AE}=\frac{AB}{AH}\)( tỉ số đồng dạng ) \(\Rightarrow AH^2=AB.AE\)