K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

đk : \(x\ge0;y\ge0;x\ne y\)

A = \(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}=\dfrac{2\sqrt{xy}}{x-y}\)

\(\Leftrightarrow\) \(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{2\sqrt{xy}}{x-y}\)

\(\Leftrightarrow\) \(\dfrac{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{2\sqrt{xy}}{x-y}\)

\(\Leftrightarrow\) \(\dfrac{x-\sqrt{xy}-\sqrt{xy}-y}{x-y}=\dfrac{2\sqrt{xy}}{x-y}\)

\(\Rightarrow\) \(x-2\sqrt{xy}-y=2\sqrt{xy}\) \(\Leftrightarrow\) \(x-y=4\sqrt{xy}\)

\(\Leftrightarrow\) A = \(\dfrac{2\sqrt{xy}}{4\sqrt{xy}}=\dfrac{1}{2}\)

không biết sai chỗ nào ??? sao bài làm lại trái với câu hỏi thế này ???

16 tháng 7 2018

ĐK:  \(x,y>0;x\ne y\)

\(VT=\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(=\frac{\sqrt{x^2y}-\sqrt{xy^2}}{\sqrt{x}-\sqrt{y}}\)

\(=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}=VP\)

\(\Rightarrow\)đpcm

16 tháng 7 2018

Ta có: \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)

TK nha!

23 tháng 10 2020

 ta có:\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\)

vậy.....

23 tháng 10 2020

\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\frac{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(=x-y\)( đpcm )

17 tháng 5 2020

em mới lớp 8

17 tháng 5 2020

\(\frac{y}{\sqrt{x+y}-\sqrt{x-y}}< \frac{z}{\sqrt{x+z}-\sqrt{x-z}}\)    (1)

<=> \(\frac{y\left(\sqrt{x+y}+\sqrt{x-y}\right)}{\left(x+y\right)-\left(x-y\right)}< \frac{z\left(\sqrt{x+z}+\sqrt{x-z}\right)}{\left(x+z\right)-\left(x-z\right)}\)

<=> \(\frac{\sqrt{x+y}+\sqrt{x-y}}{2}< \frac{\sqrt{x+z}+\sqrt{x-z}}{2}\)

<=> \(\sqrt{x+y}+\sqrt{x-y}< \sqrt{x+z}+\sqrt{x-z}\)

<=> \(2x+2\sqrt{x^2-y^2}< 2x+2\sqrt{x^2-z^2}\)

<=> \(y^2>z^2\) luôn đúng vì x > y > z > 0 

Vậy (1) đúng với x > y > z > 0.

26 tháng 7 2019

\( a)\sqrt {4{x^2} - 4x + 1} = 3\\ \Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2}} = 3\\ \Leftrightarrow \left| {2x - 1} \right| = 3\\ T{H_1}:2x - 1 \ge 0 \Rightarrow x \ge \dfrac{1}{2}\\ 2x - 1 = 3\\ \Leftrightarrow 2x = 3 + 1\\ \Leftrightarrow 2x = 4\\ \Leftrightarrow x = \dfrac{4}{2} = 2\left( {TM} \right)\\ T{H_2}:2x - 1 < 0 \Rightarrow x < \dfrac{1}{2}\\ - \left( {2x - 1} \right) = 3\\ \Leftrightarrow - 2x + 1 = 3\\ \Leftrightarrow - 2x = 3 - 1\\ \Leftrightarrow - 2x = 2\\ \Leftrightarrow x = - \dfrac{2}{2} = - 1\left( {TM} \right) \)

Vậy...

1 a) \(\sqrt{4x^2-4x+1}=3\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

b) Với x > 0 ; y > 0,ta có :

\(\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\right)=\frac{\left(\sqrt{x}+\sqrt{y}\right)\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)