K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

a) Thay m=1 vào phương trình ta được:

x2+2.1.x-6.1-9=0

<=> x2+2x-6-9=0

<=> x2+2x-15=0

<=> x2+5x-3x-15=0

<=> x(x+5)-3(x+5)=0

<=> (x-3)(x+5)=0

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

b) Thay x=2 vào phương trình ta được:

22+2.2.m-6m-9=0

<=> 4+4m-6m-9=0

<=> -2x-5=0

<=> -2x=5

<=> \(x=\frac{-5}{2}\)

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

a) Khi $m=1$ thì pt trở thành:

$x^2-2x-5=0$

$\Leftrightarrow (x-1)^2=6$

$\Rightarrow x=1\pm \sqrt{6}$ 

b) Để $x_1=3$ là nghiệm của pt thì:

$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$

Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$

c) 

$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$

Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$

Khi đó: 

Để $x_1^2+x_2^2=13$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$

$\Leftrightarrow (2m)^2-2(2m-7)=13$

$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$

d) 

$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$

$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$

 

10 tháng 8 2017

a. Với \(m=-1\)ta có phương trình \(x^2+2x-8=0\Leftrightarrow\left(x+4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=2\end{cases}}\)

Vậy với \(m=-1\)thì phương trình có 2 nghiệm \(x=-4;x=2\)

b. Ta có \(\Delta=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(4m^2-4m+1\right)+27\ge27\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m

c. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m-7\end{cases}}\)

Để \(\frac{1}{x_1}+\frac{1}{x_2}=16\Leftrightarrow\frac{x_1+x_2}{x_1.x_2}=16\Leftrightarrow\left(x_1+x_2\right)^2=256x_1.x_2\)

\(\Leftrightarrow4m^2=256\left(m-7\right)\Leftrightarrow4m^2-246m+1792=0\Leftrightarrow\orbr{\begin{cases}m=8\\m=56\end{cases}\left(tm\right)}\)

Vậy với \(m=8\)hoặc \(m=56\)thì \(\frac{1}{x_1}+\frac{1}{x_2}=16\)

10 tháng 3 2022

a, bạn tự giải 

b, \(\Delta=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0\)

Vậy pt luôn có 2 nghiệm x1 ; x2 

c, Thay x = 1 ta được \(1+m+1+m=0\Leftrightarrow2m+2=0\Leftrightarrow m=-1\)

Thay m = -1 vào ta được \(x^2-1=0\Leftrightarrow x=1;x=-1\)

hay nghiệm còn lại là -1 

4 tháng 3 2022

a, Thay m = 1 ta đc

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm pb khi delta' > 0 

\(m-2\ne0\Leftrightarrow m\ne2\)

c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)

NV
4 tháng 3 2022

d. 

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m

a: a=1; b=2m; c=-1

Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt

b: \(x_1^2+x_2^2-x_1x_2=7\)

=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)

=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)

=>4m^2=7-3=4

=>m^2=1

=>m=1 hoặc m=-1