Tim gia tri nho nhat cua cac bieu thuc sau
c) C =\(|\)2x - 18 \(|\)+ \(|\)y + 3 \(|\)+ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta thấy:
\(\left(2x+\frac{1}{3}\right)^2\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^2-\frac{5}{6}\ge0-\frac{5}{6}=-\frac{5}{6}\)
\(\Rightarrow A\ge-\frac{5}{6}\)
Dấu "=" <=>x=-1/6
Vậy MinA=-5/6<=>x=-1/6
b)Ta thấy:\(\hept{\begin{cases}\left|2x+3\right|\\\left|y-\frac{1}{2}\right|\end{cases}\ge}0\)
\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|\ge0\)
\(\Rightarrow\left|2x-3\right|+\left|y-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)
\(\Rightarrow B\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|2x-3\right|=0\\\left|y-\frac{1}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy...
a: \(\left(2x+1\right)^4-1\ge-1\)
Dấu '=' xảy ra khi x=-1/2
b: \(\left(x^2-16\right)^2+\left|y-3\right|-2\ge-2\)
Dấu '=' xảy ra khi \(\left(x,y\right)\in\left\{\left(4;3\right);\left(-4;3\right)\right\}\)
\(2x^2+10x-1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)
\(=2\left(\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right)\)
\(=\frac{-27}{2}-2\left(x+\frac{5}{2}\right)^2\le\frac{-27}{2}\)
\(MinB=\frac{-27}{2}\Leftrightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)
Vì |y + 3| luôn lớn bằng 0 với mọi y
=> 100 - |y + 3| luôn bé bằng 0
=> B luôn bé bằng 0
Dấu "=" xảy ra <=> |y + 3| = 0
=> y + 3 = 0
=> y = -3
Vậy Max B = 100 tại y = -3
Ta có - |y - 3| < 0
=> B = 100 - |y - 3| < 100
GTLN của B là 100 <=> |y - 3| = 0 <=> y = 3
B = ( x - 3 )2 + 2
Ta có: ( x - 3 )2 \(\ge0\) với mọi x
=> \(\left(x-3\right)^2+2\ge0+2=2\)với mọi x
=> \(B\ge2\) với mọi x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy gtnn của B = 2 đạt tại x = 3
C = |2 x - 18 | + |y + 3 | + 2
Có: | 2x -18| \(\ge0\); | y + 3 | \(\ge0\)=>| 2x - 18| + | y+3| \(\ge0\)
=> | 2x -18| + | y+3| + 2 \(\ge2\)
Dấu "=" xảy ra <=> 2x -18 = 0 và y + 3 = 0 <=> x = 9 và y = - 3
Vậy gtnn của B = 2 đạt tại x = 9 và y = -3.
B=(x−3)2+2 \(\ge\)2\(\forall\)x
Dấu "=" xảy ra khi x−3=0⇒x=3
Vậy GTNN của B=2 khi x=3
C=|2x−18|+|y+3|+2 \(\ge\) 2\(\forall\)x,y
Dấu "=" xảy ra khi\(\hept{\begin{cases}2x-18=0\\x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=9\\y=-3\end{cases}}\)
Vậy GTNN của C=2khi\(\hept{\begin{cases}x=9\\x=-3\end{cases}}\)
#Châu's ngốc
\(\left(x-1\right)^2\ge0;\left|2y+2\right|\ge0\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)
dấu = xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
vậy GTNN của C là -3 khi x=1, y=-1