2x3 + 5x2 + 3x = 0
( x + 5 ) ( x – 3 ) + x2 – 25 = 0
x(x – 2) – 3x + 6 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left\{0;1;2;3;4\right\}\\ b,B=\left\{-16;-13;-10;-7;-4;-1;2;5;8\right\}\\ c,C=\left\{-9;-8;-7;...;7;8;9\right\}\\ d,x^2-3x+1=0\\ \Delta=9-4=5\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{5}}{2}\\x=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\\ \Leftrightarrow D=\left\{\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right\}\)
\(e,2x^3-5x^2+2x=0\\ \Leftrightarrow x\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow E=\left\{0;2\right\}\\ f,F=\left\{0;3;6;9;12;15;18\right\}\)
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0
=x(x+3)+2(x+3)=(x+2)(x+3)=0
Dễ rồi
2)\(x^2-x-6=0=x^2-3x+2x-6=0\)
=x(x-3)+2(x-3)=0
=(x+2)(x-3)=0
Dễ rồi
3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)
Vì \(x^2+1>0\)
=>\(\left(x+2\right)^2=0\)
Dễ rồi
4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0
=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)
=>x+1=0
=>..................
5)\(x^2-7x+6=x^2-6x-x+6\) =0
=x(x-6)-(x-6)=0
=(x-1)(x-6)=0
=>.....
6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0
=2x(x+1)-5(x+1)=0
=(2x-5)(x+1)=0
7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0
Dễ rồi
Nghỉ đã hôm sau làm mệt
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)
\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)
\(< =>\left(1-x\right)\left(8x-4\right)=0\)
\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
\(\left(x-2\right)\left(x+1\right)=x^2-4\)
\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)
\(< =>-1\left(x-2\right)=0\)
\(< =>2-x=0< =>x=2\)
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
\(2x^3+5x^2+3x=0\\ < =>x\left(2x^2+5x+3\right)=0\\ < =>x\left[2x\left(x+1\right)+3\left(x+1\right)\right]=0\\< =>x\left(2x+3\right)\left(x+1\right)=0\\ < =>\left[{}\begin{matrix}x=0\\2x+3=0\\x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=\frac{-3}{2}\\-1\end{matrix}\right.\)
\(\left(x+5\right)\left(x-3\right)+x^2-25=0\\ < =>\left(x+5\right)\left(x+3\right)+\left(x-5\right)\left(x+5\right)=0\\ < =>\left(x+5\right)\left(x-3+x-5\right)=0\\ < =>\left(x+5\right)\left(2x-8\right)=0\\ < =>\left[{}\begin{matrix}x+5=0\\2x-8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
\(x\left(x-2\right)-3x+6=0\\ < =>x\left(x-2\right)-3\left(x-2\right)=0\\ < =>\left(x-2\right)\left(x-3\right)=0\\< =>\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
@Mốc
2x3 + 5x2 + 3x = 0
⇔ x.(2x2 + 5x + 3) = 0
⇔ x.(x + 1).(2x + 3) = 0
TH1: x = 0
TH2: x + 1 = 0
⇔ x = - 1
TH3: 2x + 3 = 0
⇔ x = \(\dfrac{-3}{2}\)
Vậy S = {0;- 1;\(\dfrac{-3}{2}\)}
(x + 5).(x - 3) + x2 - 25 = 0
⇔ (x + 5).(x - 3) + (x - 5).(x + 5) = 0
⇔ (x + 5).(x - 3 + x - 5) = 0
⇔ (x + 5).(2x - 8) = 0
TH1: x + 5 = 0
⇔ x = - 5
TH2: 2x - 8 = 0
⇔ x = 4
Vậy S = {- 5; 4}
x.(x - 2) - 3x + 6 = 0
⇔ x.(x - 2) - 3.(x - 2) = 0
⇔ (x - 2).(x - 3) = 0
TH1: x - 2 = 0
⇔ x = 2.
TH2: x - 3 = 0
⇔ x = 3
Vậy S = {2;3}
#chucbanhoctot:)