Cho tam giác ABC nội tiếp (O). Phân giác của  cắt (O) tại D. AD cắt tiếp tuyến tại C ở M. Từ M kẻ đường thẳng song song với BC cắt AB tại N.
Chứng minh:
a) Tứ giác ACMN nội tiếp
b) N, D, C thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Theo 1). dễ thấy Δ B F A ∽ Δ B N P ⇒ Δ B N F ∽ Δ B P A ⇒ B N B P = F N A P (1).
Tương tự Δ C M E ∽ Δ C P A ⇒ C M C P = E M A P (2).
Từ (1) và (2), ta có B N C M ⋅ C P B P = F N E M và theo giả thiết F N E M = B N C M , suy ra C P = B P ⇒ A D là phân giác góc B A C ^ .
Ai trả lời hộ điiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinhanh lênnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
a) Ta có: DE là tiếp tuyến của (O) nên ^ODE=900 . Mà OH vuông góc BE
=> ^OHE=900 => ^ODE=^OHE.
Xét tứ giác OHDE: ^OHE=^ODE=900 => Tứ giác OHDE nội tiếp đường tròn. (đpcm).
b) Dễ thấy ^EDC=^EBD (T/c góc tạo bởi tiếp tuyến và dây cung)
=> \(\Delta\)ECD ~ \(\Delta\)EDB (g.g) => \(\frac{ED}{EB}=\frac{EC}{ED}\Rightarrow ED^2=EC.EB.\)(đpcm).
c) Tứ giác OHDE nội tiếp đường tròn (cmt) => ^OEH=^ODH.
Lại có: CI//OE => ^OEH=^ICH => ^ICH=^ODH hay ^ICH=^IDH
=> Tứ giác HICD nội tiếp đường tròn => ^HID=^HCD=^BCD
Do tứ giác ABDC nội tiếp (O) => ^BCD=^BAD.
Do đó ^HID=^BAD. Mà 2 góc bên ở vị trí đồng vị => HI//AB (đpcm).
d) Gọi giao điểm của tia CI với AB là P.
Ta thấy: Đường tròn (O) có dây cung BC và OH vuông góc BC tại H => H là trung điểm BC.
Xét \(\Delta\)BPC: H là trung điểm BC; HI//BP (HI//AB); I thuộc CP => I là trung điểm CP => IC=IP (1)
Theo hệ quả của ĐL Thales; ta có: \(\frac{IP}{DM}=\frac{AI}{AD};\frac{IC}{DN}=\frac{AD}{AI}\Rightarrow\frac{IP}{DM}=\frac{IC}{DN}\)(2)
Từ (1) và (2) => DM=DN (đpcm).
a) Vì AD là p/g \(\widehat{A}\Rightarrow\widehat{BAD}=\widehat{CAD}\left(1\right)\)
Xét (O) có \(\widehat{CAD}\)là góc nt chắn cung CD
\(\widehat{MCD}\)là góc tạo bởi tiếp tuyến CM và dây CD
\(\Rightarrow\widehat{CAD}=\widehat{MCD}\left(2\right)\)
Từ (1)(2) \(\Rightarrow\widehat{BAD}=\widehat{MCD}\)
Mà A và C là 2 đỉnh liên tiếp của tg ACMN
\(\Rightarrow\)ACMN là tg nt
b) Xét \(\Delta ADN\)có \(\widehat{ADN}+\widehat{DNA}+\widehat{DAN}=180^o\)
Lại có \(\widehat{CDA}\)là góc ngoài của \(\Delta ADN\)kề \(\widehat{ADN}\)
\(\Rightarrow\widehat{CDA}=\widehat{DAN}+\widehat{DNA}\)
Do đó \(\widehat{CDA}+\widehat{ADN}=180^o=\widehat{CDN}\)
\(\Rightarrow\)3 điểm N,D,C thẳng hàng