Cho a+b+c khác 0 và a/2 = b/3 = c/4. Tính giá trị của H = a+2b+c/a+b-c
Ai làm bài này giúp mình với.....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{3a+b+2a}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)
\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)
\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
\(\Rightarrow2a+c=2b=b+c\)
\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)
Thay vào biểu thức trên , ta được :
\(P=\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}\)
Vậy \(P=9\)
Trừ cả 3 đi 1 ta còn
\(\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
Vói a+b+c=1 thì P=-1
Với a+b+c khác 0 thì
\(\Rightarrow2a+c=2b=b+c\Rightarrow2a=b=c\)
\(\Rightarrow P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\frac{3}{2}b2c3a}{abc}=9\)
Vậy............