K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2021

a) Xét ΔABM và ΔICM có

AM = MI (gt)

\(\widehat{AMB}=\widehat{CMI}\)(đối đỉnh)

BM=MC (AM là đường trung tuyến)

➩ ΔABM = ΔICM (c-g-c)

b) Xét ΔABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ 60^0+90^0+\widehat{C}=180^0\\ \widehat{C}=30^0\)

Mà \(\widehat{B}=\widehat{MCI}=90^0(ΔABM = ΔICM)\)

\(\Rightarrow\widehat{ACB}+\widehat{MCI}=\widehat{ACI}\\ 30^0+90^0=\widehat{ACI}\\ \widehat{ACI}=120^0 \)

27 tháng 5 2021

c) Xét ΔACI có: AB + CI > AI (Bất đẳng thức trong tam giác)

hay AB + CI > AM + MI

AB + CI > 2AM

Mà AB = CI (ΔABM = ΔICM)

➩ AB + BA > 2AM (đpcm)

18 tháng 5 2020

fhdgfffffffffffff    

kol

24 tháng 11 2021

Ai giúp tui đi

24 tháng 11 2021

bạn viêt khó hiểu quá, bạn viết lại cho đúng nha

 

10 tháng 7 2021

 

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có: 

    AB2= BH2 + AH2  

<=> 152= 122+ AH2

<=> AH2= 152- 122= 225- 144= 81

<=> AH= 9 (cm)

 Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .             

        AC2= AH2+ HC2

<=> 412= 92+ HC2

<=> HC2= 412- 92= 1681- 81= 1600

<=>HC= 40 (cm)

 

 

 

 

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

=>ΔABD=ΔAED

=>AB=AE

b: AB=AE

DB=DE

=>AD là trung trực của BE

23 tháng 2 2017

hình tự vẽ nhé

đường trung trục của BC là HT cắt tia phân giác AK của góc A ở I .

Xét tam giác HIB và tam giác HIC ta có:

 HB = HC ( HT là đường trung trực của BC)

 HI chung

 góc IHC= góc IHB = 90 độ

 => tam giác HIB = tam giác HIC (c.g.c)

 => IC = IB ( 2 cạnh tương ứng)

 Xét tam giác AIE và tam giác AID ta có:

 góc A1 = góc A2 ( AK là tia phân giác góc A)

 AI là cạnh chung

 => tam giác AIE = tam giác AID ( cạnh huyền góc nhọn )

=> IE=ID (2 cạnh tương ứng)

theo định lý Py-ta-go ta có:

xét tam giác vuông EIC: IC- IE= EC2

xét tam giác vuông DIB: IB2 - ID2 = BD2

mà IC=IB , ID=IE => EC2=BD2 => EC=BD

xét tam giác DBI và tam giác ECI ta có:

DB=EC (CM trên)

IE=ID (CM trên)

IB=IC (CM trên)

suy ra tam giác DBI= tam giác ECI (ĐPCM)

=> góc ACI=góc DIB (2 góc tương ứng)

mà tổng 2 góc ABI và góc DIB = 90 độ

=> góc ABI + góc ACI = 90 dộ 

28 tháng 9 2019

Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)

 Trong tam giác vuông BAH có \(\widehat{B}=60^o\)\(\widehat{BHA}=90^o\)

\(\Rightarrow\widehat{BAH}=30^o\)

   Do AB//HE

=> \(\widehat{BAH}=\widehat{AHE}=30^o\)

29 tháng 9 2019

Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)

 Trong tam giác vuông BAH có \widehat{B}=60^oB=60o\widehat{BHA}=90^oBHA=90o

\Rightarrow\widehat{BAH}=30^o⇒BAH=30o

   Do AB//HE

=> \widehat{BAH}=\widehat{AHE}=30^oBAH=AHE=30o

a) Xét ΔABD vuông tại B và ΔAED vuông tại E có 

AD chung

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

Do đó: ΔABD=ΔAED(cạnh huyền-góc nhọn)

b) Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)

nên \(\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{60^0}{2}=30^0\)(1)

Ta có: ΔABC vuông tại B(gt)

nên \(\widehat{C}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{DCA}+60^0=90^0\)

hay \(\widehat{DCA}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DCA}\)

Xét ΔDCA có \(\widehat{DAC}=\widehat{DCA}\)(cmt)

nên ΔDCA cân tại D(Định lí đảo của tam giác cân)

Suy ra: DA=DC(hai cạnh bên)

Xét ΔAED vuông tại E và ΔCED vuông tại E có 

DA=DC(cmt)

DE chung

Do đó: ΔAED=ΔCED(cạnh huyền-cạnh góc vuông)

Suy ra: EA=EC(hai cạnh tương ứng)