7. Tìm cặp đường thẳng là phân giác của góc hợp bởi đg thẳng denta : x +y =0 và trục hoành Ox
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M(x; y) là điểm thuộc đường phân giác tạo bởi 2 đường thẳng đã cho.
Chọn C.
1. Tìm cosin góc giữa 2 đg thẳng denta 1 : 10x +5y -1=0 và denta 2 : x = 2+t ; y = 1-t
\(\Delta\left(1\right):10x+5y-1=0\)
\(\Delta\left(2\right):\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)
\(\Delta\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-\left(x-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-x+2\end{matrix}\right.\Leftrightarrow x+y-3=0\)
Ta có phương trình tổng quát của \(\Delta\left(2\right)\)là \(x+y-3=0\)
\(cos\left(\Delta\left(1\right),\Delta\left(2\right)\right)=\frac{\left|a_1.a_2+b_1.b_2\right|}{\sqrt{a_1^2+b_1^2}\sqrt{a_2^2+b_2^2}}\)
\(=\frac{\left|10+5\right|}{\sqrt{1+1}.\sqrt{100+25}}=\frac{15}{5\sqrt{10}}\)
Bấm SHIFT COS\(\left(\frac{15}{5\sqrt{10}}\right)\)=o'''
\(=18^o26'5,82''\)
bài 2,3,4 tương tự vậy.
Lời giải:
PT đường phân giác đi qua điểm $O$ nên có dạng $y=kx$
Gọi $M$ là điểm nằm trên đường phân giác, có tọa độ $(a,b)$
Theo tính chất đường phân giác:
\(d(M,\Delta)=d(M,Ox)\)
\(\Leftrightarrow \frac{|a+b|}{\sqrt{1^2+1^2}}=\frac{|b|}{\sqrt{1^2+0^2}}\Leftrightarrow |a+b|=\sqrt{2}|b|\)
\(\Rightarrow \left[\begin{matrix} a+b=\sqrt{2}b\\ a+b=-\sqrt{2}b\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=b(\sqrt{2}-1)\\ a=b(-\sqrt{2}-1)\end{matrix}\right.\Rightarrow \left[\begin{matrix} b=(1+\sqrt{2})a\\ b=(1-\sqrt{2})a\end{matrix}\right.\)
Do đó PT đường phân giác có dạng
$y=(1+\sqrt{2})x$ hoặc $y=(1-\sqrt{2})x$