\(\sqrt{x+9}\) + \(\sqrt{2x+4}\) >5
giải bpt đưa về bậc 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(-2\le x\le\frac{5}{2}\)
\(\Leftrightarrow\sqrt{x+2}< \sqrt{3-x}+\sqrt{5-2x}\)
\(\Leftrightarrow x+2< -3x+8+2\sqrt{2x^2-11x+15}\)
\(\Leftrightarrow2x-3< \sqrt{2x^2-11x+15}\)
- Với \(-2\le x< \frac{3}{2}\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge\frac{3}{2}\) hai vế ko âm, bình phương:
\(4x^2-12x+9< 2x^2-11x+15\)
\(\Leftrightarrow2x^2-x-6< 0\Rightarrow-\frac{3}{2}< x< 2\) \(\Rightarrow\frac{3}{2}\le x< 2\)
Kết hợp lại ta được nghiệm của BPT: \(-2\le x< 2\)
ĐKXĐ: \(x\ge\frac{8}{3}\)
\(\Leftrightarrow\sqrt{7x+1}\le\sqrt{3x-8}+\sqrt{2x+7}\)
\(\Leftrightarrow7x+1\le5x-1+2\sqrt{6x^2+5x-56}\)
\(\Leftrightarrow x+1\le\sqrt{6x^2+5x-56}\)
\(\Leftrightarrow x^2+2x+1\le6x^2+5x-56\)
\(\Leftrightarrow5x^2+3x-57\ge0\)
Nghiệm xấu quá \(x\ge\frac{-3+\sqrt{1149}}{10}\)
Bài 2 :
a, Ta có : \(x^2-5x+4< 0\)
\(\Leftrightarrow x^2-x-4x+4< 0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
Vậy ...
b, Ta có : \(\dfrac{x-3}{x+1}< 1\)
\(\Leftrightarrow\dfrac{x-3}{x+1}-\dfrac{x+1}{x+1}< 0\)
\(\Leftrightarrow\dfrac{x-3-x-1}{x+1}=\dfrac{-4}{x+1}< 0\)
Thấy - 4 < 0
Nên để \(-\dfrac{4}{x+1}< 0\) <=> x + 1 > 0 ( TH A, B trái dấu )
Vậy ...
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)
\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)
\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)
\(\Leftrightarrow\sqrt{9+2x}< 4\)
\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)
Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)
ĐKXĐ: \(-2\le x\le3\)
Do trên \(\left[-2;3\right]\) cả \(2x+5\) và \(x+4\) đều dương nên BPT tương đương:
\(\frac{1}{2x+5}\le\frac{1}{x+4}\Leftrightarrow x+4\le2x+5\Leftrightarrow x\ge-1\)
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=-2\\-1\le x\le3\end{matrix}\right.\)
\(\sqrt{x+9}+\sqrt{2x+4}>5\) ( ĐK : \(x\ge-2\) )
\(\Leftrightarrow3x+13+2\sqrt{\left(x+9\right)\left(2x+4\right)}>25\)
\(\Leftrightarrow2\sqrt{2x^2+22x+36}>12-3x\)
Với \(x\ge4\) BPT luôn đúng
Với \(x< 4\)
\(\Leftrightarrow8x^2+88x+144>9x^2-72x+144\)
\(\Leftrightarrow x^2-160x< 0\)
\(\Leftrightarrow0< x< 160\)
Kết hợp với các TH ta được \(x>0\)
Vậy \(S=\left(0;+\infty\right)\)