Rút gọn biểu thức :
\(A=5.|x-3|-2\left(2x-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (2x - 3)(2x + 3) - (x + 5)2 - (x - 1)(x + 2) = (2x)2 - 32 - (x2 + 10x + 25) - (x2 + 2x - x - 2)
= 4x2 - 9 - x2 - 10x - 25 - x2 - 2x + x + 2 = 2x2 - 11x - 32
Bài 2:
\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Ta có: \(P=x^2-2x+2020\)
\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)
\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)
=2026
Bài 1:
\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)
=-6
Rút gọn biểu thức:
\(\left(x+3\right)^2+\left(2x+1\right)\left(3x-5\right)-2x\left(3-x\right)+4x+25\)
A = 5(x + 3)(x - 3) + (2x + 3)3 + (x - 6)2
A = 5(x + 3)(x - 3) + 4x2 + 12x + 9 + x2 - 12x + 36
A = 5x2 - 45x + 4x2 + 12x + 9 + x2 - 12x + 36
A = 10x2 (1)
Thay x = -1/5 vào (1), ta có:
A = 10x2 = 10.(-1/5)2 = 2/5
A = 2/5
Vậy:...
a: \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
Bài làm
Như đã nhắn là mình sẽ làm theo quan điểm của mình là 5/(x^2 - 1) nha
\(A=\left[\frac{3\left(x+2\right)}{2x^3+2x+2x^2+2}+\frac{2x^2-x-10}{2x^3-2-2x^2+2x}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2x+2}-\frac{3}{2x-2}\right]\)
\(A=\left[\frac{3\left(x+2\right)}{2x^2\left(x+1\right)+2\left(x+1\right)}+\frac{2x^2+4x-5x-10}{\left(2x^3-2x^2\right)+\left(2x-2\right)}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{2x\left(x+2\right)-5\left(x+2\right)}{2x^2\left(x-1\right)+2\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{\left(2x-5\right)\left(x+2\right)}{\left(2x^2+2\right)\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}+\frac{\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3\left(x-1\right)}{2\left(x^2-1\right)}-\frac{3\left(x+1\right)}{2\left(x^2-1\right)}\right]\)
\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)+\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10}{2\left(x^2-1\right)}+\frac{3x-3}{2\left(x^2-1\right)}-\frac{3x+3}{2\left(x^2-1\right)}\right]\)
\(A=\left[\frac{\left(x+2\right)\left[3x-3+\left(2x-5\right)\left(x+1\right)\right]}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10+3x-3-3x-3}{2\left(x^2-1\right)}\right]\)
\(A=\left[\frac{\left(x+2\right)\left(3x-3+2x^2+2x-5x-5\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\frac{4}{2\left(x^2-1\right)}\)
\(A=\frac{\left(x+2\right)\left(2x^2-8\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\cdot\frac{\left(x^2-1\right)}{2}\)
\(A=\frac{\left(x+2\right)2\left(x^2-4\right)}{2\left(2x^2+2\right)}\)
\(A=\frac{2\left(x+2\right)\left(x-2\right)\left(x+2\right)}{4\left(x^2+1\right)}\)
\(A=\frac{\left(x+2\right)^2\left(x-2\right)}{2\left(x^2+1\right)}\)
:>>> Chả biết đúng không nữa nhưng số to quá :>>
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x^2+3x-x-3\right)-2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+12x-4x-12-50+60x-18x^2\)
\(=6x^2+48x-57\)
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x-1\right)\left(x+3\right)-2\left(25-3x+9x^2\right)\)
\(=20x^2-20x+5+4\left(x-1\right)\left(x+3\right)-2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+8x-12-50+60x-18x^2\)
\(=6x^2+48x-57\)
Bài 2:
a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)
b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)
\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)
\(=x^4-22x^3+108x^2-45x\)
c: \(=12x^5-18x^4+30x^3-24x^2\)
d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
toi bi dien
\(\text{*Với }x-3\ge0\text{ thì:}\)
\(A=5\left(x-3\right)-2\left(2x-1\right)\)
\(=5x-15-4x+2\)
\(=x-13\)
\(\text{*Với }x-3< 0\text{ thì:}\)
\(A=-5\left(x-3\right)-2\left(2x-1\right)\)
\(=-5x+15-4x+2\)
\(=-9x+17\)
\(\cdot\text{Vậy:}\)
\(A=x-13\text{ khi }x-3\ge0\)
\(A=-9x+17\text{ khi }x-3< 0\)