Tìm a,b,c.Biết a tỉ lệ thuận b theo tỉ lệ giữa 4 và 7,b tỉ lệ nghịch với c theo tỉ lệ giữa 5 và 3 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x=2y
nên y=2/x
yz=-3
\(\Leftrightarrow z\cdot\dfrac{2}{x}=-3\)
\(\Leftrightarrow2z=-3x\)
a: xy=k
nên y=x/k
yz=1
nên \(\dfrac{x}{k}\cdot z=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
b: xy=k
y=z
nên x/k=z
=>x=kz
Vậy: x tỉ lệ thuận với z theo hệ số tỉ lệ k
c: x=ky
nên y=x/k
yz=1
nên \(\dfrac{xz}{k}=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
a: x tỉ lệ nghịch với y theo hệ số tỉ lệ k nên xy=k
y tỉ lệ thuận với z theo hệ số tỉ lệ a nên y=az
=>\(az=\dfrac{k}{x}\)
=>azx=k
=>zx=k/a
Vậy: z tỉ lệ nghịch với x theo hệ số k/a
b: x tỉ lệ nghịch với y theo hệ số k nên xy=k
y tỉ lệ nghịch với z theo hệ số a nên yz=a
\(\Leftrightarrow\dfrac{k}{x}\cdot z=a\)
=>\(\dfrac{kx}{z}=a\)
=>x/z=k/a
\(\Leftrightarrow x=\dfrac{k}{a}\cdot z\)
Vậy: x tỉ lệ thuận với z theo hệ số k/a
c: x tỉ lệ thuận với y theo hệ số k nên x=ky
y tỉ lệ thuận với z theo hệ số a nên y=az
\(\Leftrightarrow az=\dfrac{x}{k}\)
=>x=akz
=>x tỉ lệ thuận với z theo hệ số ak
a) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên \(y=a.x\) nên \(x=\dfrac{y}{a}\)
y tỉ lệ thuận với z theo hệ số tỉ lệ b nên \(y=b.z\)
Do đó, \(x=\dfrac{y}{a}=\dfrac{b.z}{a}=\dfrac{b}{a}.z\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)
Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)
b) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x=\dfrac{y}{a}\)
y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)
Do đó: \(x=\dfrac{y}{a}=\dfrac{\dfrac{b}{z}}{a}=\dfrac{b}{z}:a=\dfrac{b}{z}.\dfrac{1}{a}=\dfrac{\dfrac{b}{a}}{z}\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)
Vậy x tỉ lệ nghịch với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)
c) Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên \(y=\dfrac{a}{x}\) nên \(x=\dfrac{a}{y}\)
y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)
Do đó: \(x=\dfrac{a}{y}=\dfrac{a}{\dfrac{b}{z}}=a:\dfrac{b}{z}=a.\dfrac{z}{b}=\dfrac{a}{b}.z\left(\dfrac{a}{b}\text{ là hằng số vì a,b là các hằng số}\right)\)
Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\)
z tỉ lệ thuận với y theo hệ số tỉ lệ 2
\(\Rightarrow z=2y\)
y tỉ lệ nghịch với x theo hệ số tỉ lệ 3
\(\Rightarrow y=\dfrac{3}{x}\)
Do đó:
\(z=2\left(\dfrac{3}{x}\right)\)
\(z=\dfrac{2\cdot3}{x}=\dfrac{6}{x}\)
Vì \(z=\dfrac{6}{x}\) nên z tỉ lệ nghịch với x theo hệ số tỉ lệ là 6, ta chọn D.