Tìm số tự nhiên n sao cho: \(n^3+2018n=2020^{2019}+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(n^3+2018n=n\left(n^2-1+2019\right)=\left(n-1\right)n\left(n+1\right)+2019n⋮3\forall n\inℤ\) (*)
Lại có : \(2020\equiv1\left(mod3\right)\)
\(\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)
Và : \(4\equiv1\left(mod3\right)\)
Do đó : \(2020^{2019}+4\equiv2\left(mod3\right)\)
hay \(2020^{2019}+4⋮̸3\) . Điều này mâu thuẫn với (*)
Do đó, không tồn tại số nguyên n thỏa mãn đề.
Ta có \(n^3+2018n=n\left(n-1\right)\left(n+1\right)+2019n⋮3\).
Lại có \(2020^{2019}+4\equiv1^{2019}+4\equiv2\left(mod3\right)\).
Từ đó suy ra không tồn tại n thoả mãn đề bài.
xét A = n^3 + 2018n
A = n^3 + 2019n - n
A = n(n^2 - 1) + 2019n
A = n(n-1)(n+1)
có (n-1)n(n+1) chia hết cho 3
2019 chia hết cho 3 => 2019n chia hết cho 3
=> A chia hết cho 3 (1)
xét B = 2020^2019 + 4
2020 chia 3 dư 1 => 2020^2019 chia 3 dư 1
4 chia 3 dư 1
=> B chia 3 dư 2 (2)
đển n^3 + 2018n = 2020^2019 + 4 (3)
(1)(2)(3) => n thuộc tập hợp rỗng
\(\frac{3}{n-2018}+\frac{2}{n-2019}+\frac{1}{n-2020}=3\)
\(\Leftrightarrow\frac{3}{n-2018}-1+\frac{2}{n-2019}-1+\frac{1}{n-2020}-1=0\)
\(\Leftrightarrow\frac{3-\left(n-2018\right)}{n-2018}+\frac{2-\left(n-2019\right)}{n-2019}+\frac{1-\left(n-2020\right)}{n-2020}=0\)
\(\Leftrightarrow\frac{2021-n}{n-2018}+\frac{2021-n}{n-2019}+\frac{2021-n}{n-2020}=0\)
\(\Leftrightarrow\left(2021-n\right)\left(\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2021-n=0\left(1\right)\\\frac{1}{n-2018}+\frac{1}{n-2019}+\frac{1}{n-2020}=0\left(2\right)\end{cases}}\)
Giải \(\left(1\right)\Leftrightarrow n=2021\).
Giải \(\left(2\right)\):
- Với \(n< 2018\)thì: \(\frac{1}{n-2018}< 0,\frac{1}{n-2019}< 0,\frac{1}{n-2020}< 0\)nên phương trình vô nghiệm.
- Với \(n=2018,n=2019,n=2020\)không thỏa điều kiện xác định.
- Với \(n>2020\)thì \(\frac{1}{n-2018}>0,\frac{1}{n-2019}>0,\frac{1}{n-2020}>0\) nên phương trình vô nghiệm.
\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)
\(\Rightarrow2020^{2019}+4\equiv2\left(mod\right)3\Rightarrow VP⋮̸3\)
Xét \(VT=n\left(n^2+2018\right)\)
- Nếu \(n⋮3\Rightarrow VT⋮3\Rightarrow\) ptvn
- Nếu \(n\) chia 3 dư 1 hoặc dư 2 \(\Rightarrow n^2\) chia 3 dư 1
Mà \(2018\) chia 3 dư 2 \(\Rightarrow n^2+2018⋮3\Rightarrow VT⋮3\) \(\Rightarrow\) ptvn
Vậy ko tồn tại số tự nhiên n thỏa mãn yêu cầu
Dạ em xin chân thành xin lỗi anh Lâm vì lần trước đã thắc mắc câu trả lời của anh. Giờ em mới biết anh giỏi quá em sánh không kịp. Xin chân thành xin lỗi anh.