G=33.35.39.....32014 có là số chinh phương hay không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu m = 0 thì B = 1 + 50 + 80 = 1 + 1 + 1 = 3, không là số chính phương
+ Nếu m > 0
Có: \(5\equiv1\left(mod4\right)\Rightarrow5^m\equiv1\left(mod4\right)\)
\(1\equiv1\left(mod4\right)\)
\(8^m\equiv0\left(mod4\right)\)
Do đó, \(B=1+5^m+8^m\equiv1+1+0=2\left(mod4\right)\)
Như vậy B chia hết cho 2 nhưng không chia hết cho 4, không là số chính phương
a, Áp dụng các t/c các số tận cùng là 1 và 6khi tăng bậc số tận cùng vẫn là 6 và 6.
22015=2.22014=2.41007=2.4.41006=8.16503=8.(...6)=(...8)
32014=91007=9.91006=9.81503=9.(...1)=(...9)
=22015 + 32014 =(...8)+(...9)=(...7)
b, 172023≡72023=7.72022=7.491011=7.49.491010=7.49.2401505=(...3)
Ta có: \(2^1=..2\)
\(2^2=..4\)
\(2^3=..8\)
\(2^4=..6\)
\(2^5=..2\)
\(2^6=..4\)
\(...\)
Lần lượt như vậy, ta sẽ có:
\(2^{4k+1}=..2\)
\(2^{4k+2}=..4\)
\(2^{4k+3}=..8\)
\(2^{4k}=..6\)
Ta có: \(2015=4.503+3\)
\(=>2015=4k+3\)
\(=>2^{2015}=..8\)
Ta lại có: \(3^1=..3\)
\(3^2=..9\)
\(3^3=..7\)
\(3^4=..1\)
\(3^5=..3\)
\(3^6=..9\)
\(...\)
Lần lượt như vậy,ta có quy luật:
\(3^{4k+1}=..3\)
\(3^{4k+2}=..9\)
\(3^{4k+3}=..7\)
\(3^{4k}=..1\)
Ta có: \(2014=4.503+2\)
\(=>2014=4k+2\)
\(=>3^{2014}=..9\)
VẬY: \(2^{2015}+3^{2014}=..8+..9=..7\)
=> \(2^{2015}+3^{2014}\) có tận cùng là 7.
------------------------------------------------------------
Ta có: \(17^1=..7\)
\(17^2=..9\)
\(17^3=..3\)
\(17^4=..1\)
\(17^5=..7\)
\(17^6=..9\)
Lần lượt như vậy, ta có quy luật:
\(17^{4k+1}=..7\)
\(17^{4k+2}=..9\)
\(17^{4k+3}=..3\)
\(17^{4k}=..1\)
TA CÓ; \(2023=4.505+3\)
\(=>2023=4k+3\)
\(=>17^{2023}=..3\)
Vậy \(17^{2023}\) có tận cùng là 3.
Đề: Viết dãy các số tự nhiên từ 1 đến 101 thành một số A
a) A có là hợp số hay không ?
b) A có là số chính phương hay không ?
c) A có thể có 35 ước hay không ?
Trả lời:
a. Tổng từ 1 đến 101:
101(101+1) : 2 = 5151 (Chia hết cho 3).
=> A chia hết cho 3
=> A là hợp số
b. Vì tổng từ 1 đến 100 chia hết cho nhưng ko chia hết cho 9
=> A ko phải là số chính phương.
c. A ko phải là số chính phương nên số lượng của A ko thể là số lẻ.
Để A chia hết cho 35 thì A phải chia hết cho 5 và 7
Mà A ko chia hết cho 5
=> A ko chia hết cho 35 ( vì A ko chia hết cho 5 )
a) Tính tổng các chữ số của A ta thấy:
1+2+3 chia hết cho 3
4+5+6 chia hết cho 3
...
97+98+99 chia hết cho 3
100 + 101 = 201 chia hết cho 3
A có tổng các chữ số chia hết cho 3 nên A chia hết cho 3 ⇒ A là hợp số.
b) Vẫn tính tổng của A, nhưng theo cách:
1+2+3+...+9 chia hết cho 9
11+12+13+...+19 chia hết cho 9
...
91+92+93+...+99 chia hết cho 9
10+20+30+...+90 chia hết cho 9
100+101 không chia hết cho 9
Nên A không chia hết cho 9.
Do A chia hết cho 3 nên A viết được dưới dạng: A = 3B. Và B không chia hết cho 3 vì A không chia hết cho 9.
⇒ A không phải là 1 số chính phương.
Số mũ không có quy luật
ta có G =33+5+9+....+2014
Có S= 3+5+9+.....+2014 không biết quy luật
=> Nếu S là số chẵn => G là số chính phương
Còn S là số lẻ thì G không là số chính phương.