K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

Đăng đúng môn hộ mình :)

Ta có: \(a< b\Leftrightarrow-5a>-5b\Leftrightarrow-5a+4>-5b+4\)

( Nhớ ghi mấy cái mà nhân -5 vào 2 vế rồi.................)

13 tháng 4 2020

giải hộ cái mình mới đăng đc ko

9 tháng 4 2017

a) \(a< b\Rightarrow4a< 4b\Rightarrow4a+1< 4b+1\)

\(4b+1< 4b+3\)

\(\Rightarrow4a+1< 4b+3\)

b) \(a< b\Rightarrow-5a>-5b\Rightarrow-5a-1>-5b-1\)

\(-5b-1>-5b-4\)

\(\Rightarrow-5a-1>-5b-4\)

9 tháng 4 2017

dễ mà

9 tháng 4 2017

ta có:\(a< b\Rightarrow4a< 4b\)\(1< 3\)

\(\Rightarrow4a+1< 4b+3\)

Câu b tương tự nhưng nhớ đổi dấu khi nhân vs số âm

5 tháng 7 2019

Ta sẽ lần lượt chứng minh:\(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)và \(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)

Ta có: \(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)

\(\Leftrightarrow\)a(5b+2d)<b(5a+2c)

\(\Leftrightarrow\)5ab+2ad<5ab+2bc

\(\Leftrightarrow\)2ad<2bc\(\Leftrightarrow\)ad<bc\(\Leftrightarrow\)\(\frac{a}{b}\)<\(\frac{c}{d}\)(đúng theo giả thiết)

Do vậy:\(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)

Với lập luận tương tự ta cũng chứng minh được \(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)

Vậy \(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)

23 tháng 6 2016

nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

1 tháng 5 2019

a) vì a<b

<=>-5a>-5b

mà 7>2

<=>7-5a>2-5b

b) vì m<n <=>2m<2n<=>2m-5<2n-5

Ta có :

\(a\le b\)

\(\Rightarrow5a\le5b\)

\(\Rightarrow5a-100\le5b-100\)

\(\Rightarrow-5a+100\ge-5b+100\)(đpcm)

25 tháng 1 2019

Vì a, b, c không âm và có tổng bằng 1 nên  0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g   t ự :   5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7   ( đ p c m )