K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

\(\lim\limits_{x\to 1-}\frac{2x+1}{x-1}=-\infty\) do với $x\to 1-$ thì $\lim(2x+1)=3>0$ và $\lim (x-1)=0$ và $x-1<0$

\(\lim\limits_{x\to 6}\frac{(5x-4)\sqrt{2x-3}+x-84}{x-6}=\lim\limits_{x\to 6}\frac{(5x-4)(\sqrt{2x-3}-3)+16(x-6)}{x-6}\)

\(=\lim\limits_{x\to 6}\frac{(5x-4).\frac{2(x-6)}{\sqrt{2x-3}+3}+16(x-6)}{x-6}=\lim\limits_{x\to 6}[\frac{2(5x-4)}{\sqrt{2x-3}+3}+16]=\frac{74}{3}\)

27 tháng 11 2023

e cảm ơn cô 

NV
1 tháng 3 2020

Câu dưới là 1 giới hạn hoàn toàn bình thường (không phải dạng vô định), bạn cứ thay số vào là được thôi

\(\lim\limits_{x\rightarrow0}\left(1-x\right)tan\frac{\pi x}{2}=\left(1-0\right).tan0=1\)

29 tháng 2 2020

giai cau duoi thoi nha

18 tháng 4 2020

kékduhchchdjjdj

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

NV
24 tháng 2 2020

Làm biếng viết đủ, bạn cứ tự hiểu là giới hạn khi x tiến tới gì gì đó nhé

a/ \(lim\frac{2x.sinx.cosx}{2sin^2x}=lim\frac{cosx}{\left(\frac{sinx}{x}\right)}=1\)

b/ \(lim\frac{-x}{x\left(\sqrt{1-x}+1\right)}=lim\frac{-1}{\sqrt{1-x}+1}=-\frac{1}{2}\)

c/ \(=lim\frac{1}{x}\left(\frac{x}{x+1}\right)=lim\frac{1}{x+1}=1\)

d/ \(lim\frac{\sqrt{-x}\left(2\sqrt{-x}+1\right)}{\sqrt{-x}\left(5\sqrt{-x}-1\right)}=lim\frac{2\sqrt{-x}+1}{5\sqrt{-x}-1}=\frac{1}{-1}=-1\)

24 tháng 2 2020

giải y như t trừ câu d t ra 2/5~ như mà ko có trong đáp án ~

24 tháng 11 2023

\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{4x+5}-2x-3}{\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{4x+5-\left(2x+3\right)^2}{\sqrt{4x+5}+2x+3}\cdot\dfrac{1}{\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\left(\dfrac{4x+5-4x^2-12x-9}{\left(\sqrt{4x+5}+2x+3\right)\cdot\left(x+1\right)^2}\right)\)

\(=\lim\limits_{x\rightarrow-1}\left(\dfrac{-4x^2-8x-4}{\left(\sqrt{4x+5}+2x+3\right)\cdot\left(x+1\right)^2}\right)\)

\(=\lim\limits_{x\rightarrow-1}\left(\dfrac{-4\left(x^2+2x+1\right)}{\left(x+1\right)^2\cdot\left(\sqrt{4x+5}+2x+3\right)}\right)\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{-4}{\sqrt{4x+5}+2x+3}\)

\(=\dfrac{-4}{\sqrt{-4+5}-2+3}=\dfrac{-4}{1+1}=-\dfrac{4}{2}=-2\)