K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

\(67+x+y=180\) và \(y-x=17\)

=> \(x+y=180-67=113\)

Đưa về dạng tổng - hiệu

y = ( 113 + 17 ) : 2 = 65

x = 113 - 65 = 48

xD

27 tháng 7 2023

1) \(x+y=10\) mà \(x=y\) nên: \(x=y=\dfrac{10}{2}=5\)

2) \(2x+3y=180\) mà \(x=y\)

Ta có: \(2y+3y=180\Rightarrow5y=180\Rightarrow y=180:5=36\)

Vậy \(x=y=36\)

3) \(x+y=180\) mà \(x=y\) nên: \(x=y=\dfrac{180}{2}=90\)

4) \(3x+5y=13\) mà \(y=2x\) ta có:

\(3x+5\cdot2x=13\Rightarrow13x=13\Rightarrow x=1\)

\(y=2x=2\cdot1=2\)

Các câu còn lại bạn làm tương tự

a)Ta có: x+y = 10

hay x+x = 10 ( vì x=y)

       2x = 10

         x = 10 : 2

         x = 5

 b) Ta có: 2x + 3y = 180

hay 2x + 3x = 180 ( vì x = y)

5x = 180

 x= 180 : 5

x = 36

AH
Akai Haruma
Giáo viên
16 tháng 4 2023

Lời giải:

a.

30% x + x -15=-67

0,3 x +x=-67+15

1,3x=-52

x=-52:1,3=-40

b. x,y có điều kiện gì không bạn?

30 tháng 11 2018

B=-18+y+7+x-10-8

Thay x=5,y=7 vào biểu thức ta có:

B=-18+y+7+x-10-8

=-18+7+7+5-10-8

=19

Vậy giá trị của biểu thức khi x=5,y=7 là 19

C=x-758+[67+(-38)-(-758)]

Thay x=45 vào biểu thức ta có:

C=x-758+[67+(-38)-(-758)]

=45-758+[67+(-38)-(-758)]

=45-758+757

=44

Vậy giá trị của biểu thức khi x=45 là 44

D=a+(-17)-[-4+(-440)+440]

Thay a=65 vào biểu thúc ta có:

D=a+(-17)-[-4+(-440)+440]

=65+(-17)-[-4+(-440)+440]

=65+(-17)-(-4)

=52

Vậy giá trị của biểu thức khi a=65 là 52

The value of x is:
180:(5+1)x5=150

16 tháng 4 2022

Cảm ơn bạn nhé 

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$

$2x=10$

$x=5$

$\Rightarrow y=x=5$

Vậy $(x,y)=(5,5)$

b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$

$5x=180$

$x=36$

$y=x=36$

Vậy $(x,y)=(36,36)$

c. Thay $y=2x$ vào điều kiện đầu thì:

$3x+5.2x=13$

$13x=13$

$x=1$

$y=2x=2$

Vậy $(x,y)=(1,2)$

 

a) Ta có: x=y

mà x+y=10

nên \(x=y=\dfrac{10}{2}=5\)

b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Ta có (x + y) - (x - 2y) = 180 - 60

x + y - x + 2y = 120

3y = 120

y = 40

Ta có x + y = 180

\(\Rightarrow\) x = 180 - y = 180 - 40 = 140

23 tháng 8 2021

7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)

Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)

\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)

 

23 tháng 8 2021

4) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)

\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)

\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)

\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)

6) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)

\(\dfrac{x+11}{13}=1\Rightarrow x=2\)

\(\dfrac{y+12}{13}=1\Rightarrow y=1\)

\(\dfrac{z+13}{15}=1\Rightarrow z=2\)

7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)

\(\Rightarrow x=4k,y=5k\)

\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)

\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)

Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)