xác định tính liên tục của hàm số trên r
f(x)=2sinx+3tan2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tính liên tục của hàm số sau trên tập xác định của nó:
● Hàm số liên tục với mọi x ≠ 3.
● Tại x = 3, ta có:
⇒ Hàm số không liên tục tại x = 3.
- Vậy hàm số liên tục trên các khoảng (-∞ ; 3), (3 ; +∞).
Đáp án C
Ta có y ' = f ' x − 2 dựa trên đồ thị ta thấy x ∈ 1 ; + ∞ ⇒ f ' x > 2 ⇒ f ' x − 2 > 0 ⇒ y đồng biến
Tập xác định của hàm số là D = R
- Nếu x ≠ √2 thì
Đây là hàm phân thức hữu tỉ nên liên tục trên các khoảng (-∞; √2) và (√2; +∞)
- Tại x = √2:
Vậy hàm số liên tục tại x = √2
Kết luận : y = f(x) liên tục trên R
có tập xác định là D = R
- Nếu x ≠ 2 thì
là hàm phân thức hữu tỉ, nên nó liên tục trên các khoảng (-∞; 2) và (2; +∞)
Tại x = 2:
Vậy hàm số y = g(x) không liên tục tại x = 2
Kết luận: y = g(x) liên tục trên các khoảng (-∞; 2) và (2; +∞) nhưng gián đoạn tại x = 2
a) Đồ thị hàm số (hình bên).
Quan sát đồ thị nhận thấy :
+ f(x) liên tục trên các khoảng (-∞ ; -1) và (-1 ; ∞).
+ f(x) không liên tục tại x = -1.
⇒ không tồn tại giới hạn của f(x) tại x = -1.
⇒ Hàm số không liên tục tại x = -1.
a: TXĐ: D=R
x^2;sin x đều liên tục trên R
=>f(x) liên tục trên R
b: TXĐ: D=R\{1}
x^4;-x^2;6/x-1 đều liên tục khi x thuộc (-vô cực;1) hoặc (1;+vô cực)
=>g(x) liên tục trên (-vô cực;1) và (1;+vô cực)
c: ĐKXĐ: x<>3; x<>-4
HS \(\dfrac{2x}{x-3}\) liên tục trên (-vô cực;3) và (3;+vô cực)
(x-1)/(x+4) liên tục trên (-vô cực;-4) và (-4;+vô cực)
=>h(x) liên tục trên từng khoảng xác định của nó
Mục tiêu -500 sp mong giúp đỡ