Tính diện tích cạnh của hình tám cạnh đều theo bán kính R của đường tròn ngoại tiếp hình đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ hình vuông ABCD có cạnh 4cm.
b) Vẽ hai đường chéo AC và BD. Chúng cắt nhau tại O.
Đường tròn (O; OA) là đường tròn ngoại tiếp hình vuông ABCD.
Ta có:
(cm)
⇒ R = OA = AC/2 = 2√2 (cm).
c) Gọi H là trung điểm AB.
(O ; OH) là đường tròn nội tiếp hình vuông ABCD.
r = OH = AD/2 = 2cm.
Đáp án B
Dựng hình như hình vẽ. Đặt M N = 2 x ⇒ N P = R 2 − x 2
Khi đó S = 2 x . R 2 − x 2 ≤ R 2 − x 2 + x 2 = R 2
Vậy S max = 36 c m 2
-từ S hình vuông => cạnh tam giác =4
- BK= \(R=\frac{1}{2}.\frac{4}{\cos30}=\frac{4}{\sqrt{3}}\left(cm\right)\)
a) Vẽ hình vuông cạnh 4cm.
b) Vẽ đường tròn ngoại tiếp hình vuông đó. Tính bán kính R của đường tròn này.
c) Vẽ đường tròn nội tiếp hình vuông đó. Tính bán kính r của đường tròn này.
Hướng dẫn trả lời:
a) Dùng êke ta vẽ hình vuông ABCD có cạnh bằng 4cm như sau:
- Vẽ AB = 4cm.
- Vẽ BC ⊥ AB và BC = 4cm
- Vẽ DC ⊥ BC và DC = 4cm
- Nối D với A, ta có AD ⊥ DC và AD = 4cm
b) Tam giác ABC là tam giác vuông cân nên AB = BC.
Áp dụng định lí Py – ta – go trong tam giác vuông ABC, ta có:
AC2=AB2+BC2=2AB2⇔AC2=2.42=32⇒AC=√32=4√2AC2=AB2+BC2=2AB2⇔AC2=2.42=32⇒AC=32=42
Vậy AO=R=AC2=4√22=2√2AO=R=AC2=422=22
Vậy R = 2√2 cm
c) Vẽ OH ⊥ Dc. Vẽ đường tròn tâm O, bán kính OH. Đó là đường tròn nội tiếp hình vuông ABCD
Ta có: OH=AD2=2(cm)OH=AD2=2(cm)
Vậy r = OH = 2cm
\
Giả sử AB là 1 cạnh của hình tám cạnh đều, gọi AB=a.
Vẽ AK là đường co của tam giác OAB
Ta có: \(\widehat{AOB}=\frac{360^o}{8}=45^o\Rightarrow OK=AK=\sin45^o=\frac{OA\sqrt{2}}{2}=\frac{R\sqrt{2}}{2}\)
Nên KB=OB-OK=\(\frac{R\sqrt{2}}{2}-R=R\left(\frac{\sqrt{2}}{2}-1\right)\)
Xét tam giác KAB vuông tại K, theo định lý Pytago ta có:
\(AB^2=AK^2+KB^2=\left(\frac{R\sqrt{2}}{2}\right)^2+\left[R\left(\frac{\sqrt{2}}{2}-1\right)\right]^2\)
\(AB^2=R^2\left(\frac{1}{2}+\frac{1}{2}-\sqrt{2}+1\right)\)
\(\Rightarrow AB^2=\left(2-\sqrt{2}\right)R^2\)
\(\Rightarrow AB=\sqrt{2-\sqrt{2}}R\)