K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

x3+x2+x+1=0

<=> x2(x+1)+(x+1)=0

<=> (x2+1)(x+1)=0

<=> x+1=0 (vì x2+1>0 với mọi x)

<=> x=-1

25 tháng 8 2019

a) x = -1.                      b) x = 4 hoặc x = 5.

c) x = ± 2 .                  d) x = 1 hoặc x = 2.

27 tháng 12 2019

18 tháng 6 2019

x 3   –   x 2   –   x   +   1   =   0     ⇔   ( x 3   –   x 2 )   –   ( x   –   1 )   =   0     ⇔   x 2 ( x   –   1 )   –   ( x   –   1 )   =   0     ⇔   ( x 2   –   1 ) ( x   –   1 )   =   0     ⇔   ( x   –   1 ) ( x   +   1 ) ( x   –   1 )   =   0     ⇔   ( x   –   1 ) 2 ( x   +   1 )   =   0

 

  

Vậy x = 1 hoặc x = -1

Đáp án cần chọn là: A

29 tháng 6 2019

x 3   –   x 2   –   x   +   1   =   0     ⇔   ( x 3   –   x 2 )   –   ( x   –   1 )   =   0     ⇔   x 2 ( x   –   1 )   –   ( x   –   1 )   =   0     ⇔ ( x 2   –   1 ) ( x   –   1 )   =   0     ⇔   ( x   –   1 ) ( x   +   1 ) ( x   –   1 )   =   0     ⇔   ( x   –   1 ) 2 ( x   +   1 )   =   0

 

Vậy x = 1 hoặc x = -1

Đáp án cần chọn là: A

19 tháng 12 2021

a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ 

1 tháng 11 2021

a) \(\Rightarrow x\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)

7 tháng 11 2024

vậy giỏi zữ vậy

16 tháng 11 2023

1. a) \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=14x^5+21x^7\)

b) \(\left(x^3-x^2+x-1\right):\left(x-1\right)=\dfrac{x^3-x^2+x-1}{x-1}\)

\(=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{x-1}=\dfrac{\left(x-1\right)\left(x^2+1\right)}{x-1}=x^2+1\)

16 tháng 11 2023

2: \(x^2-8x+7=0\)

=>\(x^2-x-7x+7=0\)

=>\(x\left(x-1\right)-7\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x-7\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

1:

a: \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=21x^7+14x^5\)

b: \(\dfrac{x^3-x^2+x-1}{x-1}=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{\left(x-1\right)}\)

\(=x^2+1\)

11 tháng 9 2019

a) x = 1; x = - 1 3                 b) x = 2.

c) x = 3; x = -2.                 d) x = -3; x = 0; x = 2.

5 tháng 9 2017

8 x 3  + 12 x 2  + 6x + 1 = 0

2 x 3  + 3. 2 x 2 .1 + 3.(2x). 1 2  + 1 3  = 0

2 x + 1 3  = 0

2x + 1 = 0

x = (-1)/2