K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

12/16 = - x/4 = 21/y = z/-80

+ 12/16 = - x/4

=> Vì 12.4 = 16.(-x)

           48  = - 16x

            x   = 48 : (-16)

            x = -3

+ -3/4 = 21/ y

=> Vì (-3) . y = 4.21

           - 3y    = 84

               y    =  84 : ( -3)

               y    =  -28

+ 21/ -28 = z /-80

=> Vì 21.(-80) = (-28) . z

           - 1680  =  -28z

                   z  =  -1680: ( -28)

                   z = 60

  Vậy x = -3   ;  y = -28  ;  z = 60

9 tháng 4 2020

12/16 = -x/4 = 21/y = z/-80

=> 3/4 = -x/4 = 21/y = z/-80

* 3/4 = -x/4 => -x = 3 => x = -3

* -3/4 = 21/y 

Ta có : -3y = 4 . 21

-3y = 84

y = 84 : ( -3 ) = -28

* 21/-28 = z/-80

Ta có : 21 . ( -80 ) = -28z

            -1680 = -28z

            z = -1680 : -28 = 60

vậy x = -3 ; y = -28 ; z = 60

16 tháng 5 2019

x=3

y=28

z=60

16 tháng 5 2019

Rút gọn phân số : \(\frac{12}{16}=\frac{12:4}{16:4}=\frac{3}{4}\)

Ta có : \(\frac{3}{4}=\frac{x}{4}\)

\(\Rightarrow3=x\Leftrightarrow x=3\)

Ta lại có : \(\frac{3}{4}=\frac{21}{y}\)

\(\Rightarrow3y=84\)

\(\Rightarrow y=84:3=28\)

Ta lại có : \(\frac{3}{4}=\frac{z}{80}\)

\(\Rightarrow3\cdot80=4z\)

\(\Rightarrow z=\frac{3\cdot80}{4}=60\)

31 tháng 7 2017

\(\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{z}{80}\)

\(\Rightarrow\frac{3}{4}=\frac{-x}{4}=\frac{21}{y}=\frac{z}{80}\)

  • \(\frac{3}{4}=\frac{-x}{4}\Rightarrow-x=\frac{3\cdot4}{4}=3\Rightarrow x=-3\)
  • \(\frac{-\left(-3\right)}{4}=\frac{21}{y}\Rightarrow y=\frac{21\cdot4}{-\left(-3\right)}=28\)
  • \(\frac{21}{28}=\frac{z}{80}\Rightarrow z=\frac{21\cdot80}{28}=60\)

Vậy x=-3, y=28, z=60

31 tháng 7 2017

bạn ơi 21 / 28 ở đâu ra vậy

\(\Leftrightarrow\dfrac{x}{-4}=\dfrac{21}{y}=\dfrac{z}{-80}=\dfrac{3}{4}\)

=>x=-3; y=28; z=-60

8 tháng 2 2022

x = -3; y = 28; z = -60

Bài 1 : Cho 2 phân số bằng nhau a\b=c\d chứng minh rằng a+b\b=c+d\dBài 2 : Tìm số tự nhiên x,y,z biết a)21\x=y\16=-14\z=7\4 với x,y,z thuộc Z*b)-21\x=y\-16=81\z=-3\4 với x,y,z thuộc Z*Bài 3 : Tìm các số nguyên x , thỏa mãn : 2x\-9=10\81Bài 4 : Cho phân số A=n+1\n-3:a)Tìm điều kiện của n để A là phân số.b)Tìm điều kiện của n để A là số nguyên.Bài 5 : Quy đồng mẫu phân số :a)7\-15 , -8\-25 và 11\-75b)-7\10 và...
Đọc tiếp

Bài 1 : Cho 2 phân số bằng nhau a\b=c\d chứng minh rằng a+b\b=c+d\d

Bài 2 : Tìm số tự nhiên x,y,z biết a)21\x=y\16=-14\z=7\4 với x,y,z thuộc Z*

b)-21\x=y\-16=81\z=-3\4 với x,y,z thuộc Z*

Bài 3 : Tìm các số nguyên x , thỏa mãn : 2x\-9=10\81

Bài 4 : Cho phân số A=n+1\n-3:

a)Tìm điều kiện của n để A là phân số.

b)Tìm điều kiện của n để A là số nguyên.

Bài 5 : Quy đồng mẫu phân số :

a)7\-15 , -8\-25 và 11\-75

b)-7\10 và 1\33

Bài 6 : Cho các phân số : -2\16,6\-9,-3\-6,3\-72,10\-12

a) Rút gọn rồi viết các phân số dưới dạng phân số có mẫu số dương

b) Viết các phân số đó dưới dạng phân số có mẫu là 24

Bài 7 : Cho các phân số : 5*6+5*7\5*8+20 và 8*9-4*15\12*7-180

a) Rút gọn các phân số 

b) Quy đồng mẫu các phân số

Bài 8 : Quy đòng mẫu các phân số :

a) 5\2^2*3 và 7\2^3*11

b) -2\7, 8\9 , -10\21

Bài 9 : Tìm 1 phân số có mẫu là 13 biết rằng giá trị của nó không thay đổi khi ta cộng tử với -20 và nhân mẫu với 5.

Bài 10 : Tìm các phân số có mẫu là 3 lớn hơn -1\2 và nhỏ hơn 1\2.

 

1
2 tháng 3 2021
-4/7; 8/9; -10/21
27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

22 tháng 12 2015

1)(2x+1)(y-4)=12

Ta xét bảng sau:

2x+11-12-23-34-46-612-12
2x0-21-32-43-55-711-13
x0-1  1-2      
y-412-12  4-4      
y16-8  80      

 

2)n-7 chia hết cho n+1

n+1-8 chia hết cho n+1

=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}

=>nE{2;0;3;-1;5;-3;9;-7}

3)|x+3|+2<4

|x+3|<4-2

|x+3|<2

=>|x+3|=1      và      |x+3|=0

=>x+3=1               hoặc            x+3=-1                 hay              x+3=0

x=1-3                                       x=-1-3                                     x=0-3

x=-2                                        x=-4                                        x=-3

Vậy x=-2;-3 hoặc x=-4

 

26 tháng 9 2016

Bài 1:

\(\text{Giả sử: }\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=k\)

\(\Rightarrow x=2k;y=4k;z=6k\)

Thay vào: x-y +z= 2k- 4k+ 6k= 8

                           = 4k= 8

=> k= \(\frac{8}{4}=2\)

=> x= 2. 2= 4

     y= 4. 2= 8

     z= 6.2 = 12

Vậy \(\begin{cases}x=4\\y=8\\z=12\end{cases}\)

 

 

26 tháng 9 2016

Bài 2:

Giải:

Gọi số học sinh 4 khối 6, 7, 8, 9 là a, b, c, d ( a,b,c,d thuộc N* )

Ta có: \(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}\) và a + b + c + d = 660

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}=\frac{a+b+c+d}{3+3,5+4,5+4}=\frac{660}{15}=44\)

+) \(\frac{a}{3}=44\Rightarrow a=132\)

+) \(\frac{b}{3,5}=44\Rightarrow b=154\)

+) \(\frac{c}{4,5}=44\Rightarrow c=198\)

+) \(\frac{d}{4}=44\Rightarrow d=176\)

Vậy khối 6 có 132 học sinh

        khối 7 có 154 học sinh

        khối 8 có 198 học sinh

        khối 9 có 176 học sinh