K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.

Trong 1 giờ người thứ nhất làm được 1/x công việc, người thứ hai 1/y công việc, cả hai người cùng làm chung thì được 1/8 công việc.

Ta được : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\)

Trong 3 giờ, người thứ nhất làm được 3/x công việc, trong 4 giờ người thứ hai làm được 4/y công việc, cả hai người làm được 4/5 công việc

Ta được\(\frac{3}{x}+\frac{4}{x}=\frac{4}{5}\)

Ta có hệ phương trình : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\\\frac{3}{x}+\frac{4}{x}=\frac{5}{4}\end{cases}}\)

Giải ra ta được x = \(\frac{35}{4}\), y = \(\frac{280}{3}\)

Vậy người thứ nhất 35/4 giờ, người thứ hai 280/3 giờ.

16 tháng 8 2017

Nếu làm chung thì ba đội sẽ hoàn thành công việc trong:

\(\frac{12+18+36}{3}\)= 22 ngày

16 tháng 8 2017

mk xin lỗi nhưng bài của bạn ko đúng rồi ! vì bn ra kết quả còn lớn hơn 1 đội làm

NV
18 tháng 1

Gọi thời gian làm 1 mình xong việc của đội 1 là x ngày và của đội 2 là y ngày (với x>10;y>0)

Trong 1 ngày đội 1 làm được \(\dfrac{1}{x}\) phần công việc và đội 2 làm được \(\dfrac{1}{y}\) phần công việc

Do làm riêng đội 1 làm chậm hơn đội 2 là 10 ngày nên ta có:

\(x-y=10\) (1)

Hai đội làm chung trong 1 ngày được \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc

Do 2 đội làm chung thì hoàn thành trong 12 ngày nên ta có:

\(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\) (2)

Từ (1) và (2) ta có hệ:

\(\left\{{}\begin{matrix}x-y=10\\12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-10\\12\left(x+y\right)=xy\end{matrix}\right.\)

Thế pt trên xuống pt dưới:

\(12\left(x+x-10\right)=x\left(x-10\right)\)

\(\Leftrightarrow x^2-34x+120=0\Rightarrow\left[{}\begin{matrix}x=30\\x=4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow y=x-10=20\)

Vậy đội 1 làm 1 mình xong trong 30 ngày và đội 2 xong trong 20 ngày

Gọi thời gian làm riêng hoàn thành công việc của đội một là x(ngày)

(Điều kiện: x>10)

Thời gian làm riêng hoàn thành công việc của đội 2 là x-10(ngày)

Trong 1 ngày, đội 1 làm được \(\dfrac{1}{x}\left(côngviệc\right)\)

Trong 1 ngày, đội 2 làm được \(\dfrac{1}{x-10}\left(côngviệc\right)\)

Trong 1 ngày, hai đội làm được \(\dfrac{1}{12}\left(côngviệc\right)\)

Do đó, ta có phương trình:

\(\dfrac{1}{x}+\dfrac{1}{x-10}=\dfrac{1}{12}\)

=>\(\dfrac{x-10+x}{x\left(x-10\right)}=\dfrac{1}{12}\)

=>\(x\left(x-10\right)=12\left(2x-10\right)\)

=>\(x^2-10x=24x-120\)

=>\(x^2-34x+120=0\)

=>(x-30)(x-4)=0

=>\(\left[{}\begin{matrix}x-30=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Vậy: Thời gian làm riêng hoàn thành công việc của đội 1 là 30 ngày

Thời gian làm riêng hoàn thành công việc của đội 2 là 30-10=20 ngày

6 tháng 6 2021

đổi 2 giờ 40 phút=\(\dfrac{8}{3}\) giờ

gọi thời gian đội 1 và đội 2 làm riêng để hoàn thành công việc lần lượt là

x,y(x,y>\(\dfrac{8}{3}\) )

=>hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\dfrac{8}{3}}=\dfrac{3}{8}\\y-x=4\end{matrix}\right.\) giải hệ pt trên ta được \(\left\{{}\begin{matrix}x=4\left(TM\right)\\y=8\left(TM\right)\end{matrix}\right.\)

vậy nếu làm riêng để hoàn thành công việc thì đội thứ nhất hết 4 giờ

đội thứ 2 hết 8 giờ

NV
8 tháng 1 2023

Gọi thời gian làm riêng để hoàn thành công việc của đội 1 là x>0 (ngày), đội 2 là y>0 (ngày)

Trong 1 ngày hai đội lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc

Do 2 đội làm chung thì hoàn thành sau 12 ngày nên: \(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)

Do đội 1 hoàn thành chậm hơn đội 2 là 10 ngày nên: \(x=y+10\)

Ta có hệ pt:

\(\left\{{}\begin{matrix}12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\\x=y+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}12\left(\dfrac{1}{y+10}+\dfrac{1}{y}\right)=1\\x=y+10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}12\left(2y+10\right)=y\left(y+10\right)\\x=y+10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2-14y-120=0\\x=y+10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=20\\x=30\end{matrix}\right.\)

2 tháng 7 2021

- Gọi thời gian mỗi đội hoàn thành công việc là x; y ( ngày ; x,y > 8 )

- Một ngày đội 1 làm được số phần công việc là : \(\dfrac{1}{x}\) ( phần )

- Một ngày đội 2 làm được số phần công việc là : \(\dfrac{1}{y}\) ( phần )

=> Một ngày hai đội làm được số phần công việc là : \(\dfrac{1}{x}+\dfrac{1}{y}\) ( phần )

Mà nếu làm chung 8 ngày sẽ xong công việc .

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\left(I\right)\)

- Lại có nếu làm riêng đội 1 nhanh hơn đội 2 12 ngày .

\(\Rightarrow-x+y=12\left(II\right)\)

- Từ 1 và 2 ta được hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\-x+y=12\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=24\\x=12\end{matrix}\right.\) ( TM )

Vậy ...

2 tháng 7 2021

Gọi số ngày hoàn thành công việc riêng của đội 1 là a (a>0) (ngày)

=> Số ngày hoàn thành công việc riêng của đội 2 là a + 12  (ngày)

Số công việc mỗi ngày của đội 1: \(\dfrac{1}{a}\) (công việc)

Số công việc mỗi ngày của đội 2: \(\dfrac{1}{a+12}\) (công việc)

Theo bài ta có

\(8.\left(\dfrac{1}{a}+\dfrac{1}{a+12}\right)=1\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{a+12}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{a+12}{a\left(a+12\right)}+\dfrac{a}{a\left(a+12\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{2a+12}{a^2+12a}=\dfrac{1}{8}\)

\(\Leftrightarrow16a+96=a^2+12a\)

\(\Leftrightarrow a^2-4a-96=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=12\\a=-8\left(loại\right)\end{matrix}\right.\)

Vậy số ngày hoàn thành công việc riêng của đội 1 là 12 ngày, đội 2 là 24 ngày

Gọi thời gian mà đội 1 làm một mình xong cv là x (ngày) x > 0

Gọi thời gian mà đội 2 làm một mình xong cv là y (ngày) y > 0

Một ngày cả hai đội làm được 1/x + 1/y = 1/12 cv (1)

Nếu làm riêng 1 mình đội 1 nhanh hơn đội 2 là 7 ngày nên: x + 7 = y (2)

Giải hệ 2 pt trên ta được x = 21, y = 28

23 tháng 12 2018

Gọi thời gian đội 1 và đội 2 hoàn thành công việc một mình lần lượt là x(ngày), y( ngày)(x,y>12)

Mỗi ngày đội 1 làm được phẫn việc là 1/x

Đội 2 làm được số phần việc là 1/y

cả hai đội làm được số phần việc là 1/12

ta có phương trình: 1/x+1/y=1/12(1)

Đội 1 làm trong 5 ngày rồi nghỉ, dội 2 làm tiếp 15 ngày thì họ làm được 75%công việc

từ đó ta có phương trình: 5/x+15/y=3/4(2)

Từ (1)(2) ta có hệ phương trình:{1/x+1/y=1/12; 5/x+15/y=3/4

Giải hệ pt ta tìm được x=20; y=30

KL:Nếu làm một mình thì đội thứ nhất hoàn thành công việc trong 20 ngày, đội thứ hai hoàn thành công việc trong 30 ngày.

2 tháng 2 2019

36 giờ sẽ làm xong công việc

- Hai người cùng làm trong 18 giờ thì hoàn thành công việc.
- Nếu hai người cùng làm trong 6 giờ thì hoàn thành được .

Nếu hai người cùng làm trong 6 giờ thì hoàn thành được 
1 × 6/18 = 1/3 ( công việc ).

- Ta có : 50% = 1/2. 
Vậy lương công việc người thứ hai làm được một mình trong 6 giờ là: 
1/2 - 1/3 = 1/6 ( công việc ) .
Muốn một mình hoàn thành công việc, người thứ hai phải làm trong là:
6 : (1/6) = 36 ( giờ ).
Trong 6 giờ một mình người thứ nhất làm được là:
1/3 - 1/6 = 1/6 ( công việc ).
Vậy người thứ nhất cũng làm nhanh như người thứ hai và sẽ một mình hoàn thành công việc trong 36 giờ.