Bài 5: Cho tam giác MNP cân tại M. Kẻ MK PN (K NP)
a) Chứng minh: MNK = MPK và MK là đường trung trực của đoạn thẳng NP
b) Trên tia đối của tin NP lấy điểm A, trên tia đối của tia PN lấy điểm B sao cho AN = BP.
Chứng minh: MA = MB
c) Lấy điểm D bất kỳ trên cạnh MA (D khác A, M). Qua D, kẻ đường thẳng song song với AB
cắt MB tại E. Chứng minh: MDE cân
Ai giải nhanh giúp mk vs mk tick cho
a) Xet tam giac MNK va tam giac MPK co:
Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP ) (1)
MK ( canh chung ) (2)
MN = MP ( tam giac MNP can tai M ) (3)
Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )
b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va
goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )
ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA
Xet tam giac MNA va tam giac MPB co:
PB = NA ( gt ) (1)
MP = MN ( tam giac MNP can tai M ) (2)
goc MPB = goc MNA ( cmt ) (3)
Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )
=> MA = MB ( 2 canh tuong ung )
c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB
MED MBA MED MBA
Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )