4x^2-3|x|-1=0
tìm x ; help meeeee
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
16x2 - (4x+1)2 = 0
16x2 - (16x2+8x+1) = 0
16x2 -16x2 - 8x-1=0
-8x-1=0
-8x=1
x= 1/-8
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
\(\dfrac{1}{3}x+\dfrac{2}{3}\left(x-1\right)=0\\ \dfrac{1}{3}x+\dfrac{2}{3}x-\dfrac{2}{3}=0\\ x=\dfrac{2}{3}\)
Ta có: \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+x\left(7x-6\right)=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+x+7x^2-6x=0\)
\(\Leftrightarrow x^2+7x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\)
a: (x-1)(x+2)(-x-3)=0
=>(x-1)(x+2)(x+3)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
b: (x-7)(x+3)<0
TH1: \(\left\{{}\begin{matrix}x-7>0\\x+3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>7\\x< -3\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-7< 0\\x+3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 7\\x>-3\end{matrix}\right.\)
=>-3<x<7
mà x nguyên
nên \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)