K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

Ta có : 6.x2 + 15.x + \(\sqrt{2.x^2+5.x+1}=1\)

<=> 3.( 2.x2 + 5.x + 1 ) + \(\sqrt{2.x^2+5.x+1}-4=0\)

Đặt \(\sqrt{2.x^2+5.x+1}=a\left(a>0\right)\)

=> 3.a2 + a -4 =0

<=> ( 3.a + 4 ) .( a - 1 ) = 0

=> a = 1 => 2.x2 + 5.x +  1 =1 

<=> \(\orbr{\begin{cases}x=0\\x=\frac{-5}{2}\end{cases}}\)

Vậy nghiệm cuối cùng là { 0 ; \(\frac{-5}{2}\)

2 tháng 10 2018

Đặt \(\sqrt{2x^2+5x+1}=a\) (a không âm) => a2 = 2x2 + 5x + 1 => 3a2 = 6x2 + 15x + 3

pt <=> 3a2 + a - 4 = 0

<=> \(\left[{}\begin{matrix}a=1\left(TM\right)\\a=\dfrac{-4}{3}\left(KTM\right)\end{matrix}\right.\)

<=> \(\sqrt{2x^2+5x+1}=1\)

<=> 2x2 + 5x + 1 = 1

<=> 2x2 + 5x = 0

<=> x = 0 hoặc x = -2,5

Vậy ...

7 tháng 5 2020

\(\hept{\begin{cases}y^2\sqrt{2x-1}+\sqrt{3}=5y^2-\sqrt{6x-3}\left(1\right)\\2y^4\left(5x^2-17x+6\right)=6-15x\left(2\right)\end{cases}}\)

\(ĐKXĐ:x\ge\frac{1}{2}\)

\(\left(2\right)\Leftrightarrow2y^4\left(5x-2\right)\left(x-3\right)=3\left(2-5x\right)\)\(\Leftrightarrow\left(5x-2\right)\left[2y^4\left(x-3\right)+3\right]=0\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\left(KTMĐK\right)\\2y^4\left(x-3\right)+3=0\end{cases}}\)

Với \(2y^4\left(x-3\right)+3=0\)thì ta được \(y^4=\frac{3}{6-2x}\Rightarrow y^2=\sqrt{\frac{3}{6-2x}}\)(3)

Thay vào (1), ta được \(\sqrt{\frac{3}{6-2x}}.\sqrt{2x-1}+\sqrt{3}=5\sqrt{\frac{3}{6-2x}}-\sqrt{6x-3}\)

\(\Leftrightarrow\sqrt{6x-3}+\sqrt{3\left(6-2x\right)}=5\sqrt{3}-\sqrt{\left(6x-3\right)\left(6-2x\right)}\)

Đặt \(u=\sqrt{6x-3};v=\sqrt{3\left(6-2x\right)}\left(u,v\ge0\right)\).Khi đó ta được hệ phương trình:

\(\hept{\begin{cases}u^2+v^2=15\\u+v=5\sqrt{3}-\frac{uv}{\sqrt{3}}\end{cases}}\Leftrightarrow\hept{\begin{cases}u^2+v^2=15\\\sqrt{3}\left(u+v\right)+uv=15\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3\left(u+v\right)^2=45+6uv\\\sqrt{3}\left(u+v\right)=15-uv\end{cases}}\)

Từ hệ trên suy ra được \(45+6uv=\left(15-uv\right)^2\Leftrightarrow\left(uv\right)^2-36uv+180=0\)

\(\Leftrightarrow\left(uv-6\right)\left(uv-30\right)=0\Leftrightarrow\orbr{\begin{cases}uv=6\\uv=30\end{cases}}\)(\(uv\ge0\))

+) Với uv = 30 ta được: \(u+v=-5\sqrt{3}\)(loại)

+) Với uv = 6 ta được: \(u+v=3\sqrt{3}\)suy ra u, v là hai nghiệm của phương trình \(k^2-3\sqrt{3}k+6=0\)

Giải phương trình bậc hai trên ta thu được hai nghiệm \(2\sqrt{3}\)và \(\sqrt{3}\)

Suy ra \(u=2\sqrt{3};v=\sqrt{3}\)hoặc \(u=\sqrt{3};v=2\sqrt{3}\)

* Với \(u=2\sqrt{3};v=\sqrt{3}\)thì \(\hept{\begin{cases}\sqrt{6x-3}=2\sqrt{3}\\\sqrt{3\left(6-2x\right)}=\sqrt{3}\end{cases}}\Rightarrow x=\frac{5}{2}\)

* Với \(u=\sqrt{3};v=2\sqrt{3}\)thì \(\hept{\begin{cases}\sqrt{6x-3}=\sqrt{3}\\\sqrt{3\left(6-2x\right)}=2\sqrt{3}\end{cases}}\Rightarrow x=1\)

+) Thay \(x=\frac{5}{2}\)vào (3) tìm được \(y=\pm\sqrt[4]{3}\)

+) Thay x = 1 vào (3) tìm được \(y=\pm\sqrt{\frac{\sqrt{3}}{2}}\)

Vậy hệ phương trình có 4 nghiệm (x;y) là \(\left\{\left(1;\sqrt{\frac{\sqrt{3}}{2}}\right);\left(1;-\sqrt{\frac{\sqrt{3}}{2}}\right);\left(\frac{5}{2};\sqrt[4]{3}\right);\left(\frac{5}{2};-\sqrt[4]{3}\right)\right\}\)

7 tháng 5 2020

ĐKXĐ: \(x\ge\frac{1}{2}\)biến đổi phương trình thứ hai ta được

\(2y^4\left(5x-2\right)\left(x-3\right)=3\left(2-5x\right)\Rightarrow\orbr{\begin{cases}x=\frac{2}{5}\left(loai\right)\\2xy^4+3=6y^4\end{cases}}\)

Ta đưa về hệ về pt \(\hept{\begin{cases}y^2\sqrt{2x-1}+\sqrt{3}\cdot\sqrt{2x-1}=5y^2-\sqrt{3}\\2xy^4+3=6y^4\end{cases}}\)

Nhận thấy y=0 không là nghiệm của hệ pt nên chia cả 2 vế của pt thứ nhất cho y2 và pt thứ hai cho y4 có:

\(\hept{\begin{cases}\sqrt{2x-1}+\frac{\sqrt{3}}{y^2}\sqrt{2x-1}=5-\frac{\sqrt{3}}{y^2}\\2x-1+\frac{3}{y^4}=5\end{cases}}\)

Đặt \(a=\sqrt{2x-1};b=\frac{\sqrt{3}}{y^2}\left(a\ge0;b\ge0\right)\)

Ta có hệ pt \(\hept{\begin{cases}a+ab+b=5\\a^2+b^2=5\end{cases}}\)

Ta được \(a=\frac{5-b}{1+b}\)thay vào phương trình thứ hai ta có:

\(\left(\frac{5-b}{1+b}\right)^2+b^2=5\Leftrightarrow b^4+2b^3-3b^2-20b+20=0\Leftrightarrow\left(b-1\right)\left(b^2+5b+10\right)=0\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=1\\b=2\end{cases}}\)

Với \(\hept{\begin{cases}a=2\\b=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\pm\sqrt[4]{3}\end{cases}}}\)

Với \(\hept{\begin{cases}a=1\\b=2\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\pm\frac{\sqrt[4]{3}}{\sqrt{2}}\end{cases}}}\)

Vậy \(\left(x;y\right)\in\left\{\left(\frac{5}{2};\pm\sqrt[4]{3}\right);\left(1;\pm\frac{\sqrt[4]{3}}{\sqrt{2}}\right)\right\}\)

29 tháng 1 2020

a) \(6x^2-x-1\)

\(=6x^2-3x+2x-1\)

\(=3x\left(2x-1\right)+\left(2x-1\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\)

29 tháng 1 2020

b) \(6x^2-6x-3\)

\(=3\left(2x^2-2x-1\right)\)

3 tháng 7 2021

\(1.\)

\(4x^2-4x-3\)

\(=4x^2-2x+6x-3\)

\(=2x\left(2x-1\right)+3\left(2x-1\right)\)

\(=\left(2x+3\right)\left(2x-1\right)\)

\(2.\)

\(2x^2-5x-3\)

\(=2x^2-6x+x-3\)

\(=2x\left(x-3\right)+\left(x-3\right)\)

\(=\left(2x+1\right)\left(x-3\right)\)

\(3.\)

\(3x^2-5x-2\)

\(=3x^2+x-6x-2\)

\(=x\left(3x+1\right)-2\left(3x+1\right)\)

\(=\left(3x+1\right)\left(x-2\right)\)

\(4.\)

\(2x^2+5x+2\)

\(=2x^2+4x+x+2\)

\(=2x\left(x+2\right)+\left(x+2\right)\)

\(=\left(2x+1\right)\left(x+2\right)\)

3 tháng 7 2021

\(5.\)

\(6x^2-x-1\)

\(=6x^2-3x+2x-1\)

\(=2x\left(3x+1\right)-\left(3x+1\right)\)

\(=\left(2x-1\right)\left(3x+1\right)\)

\(6.\)

\(6x^2-6x-3\)

\(=3\left(2x^2-2x-1\right)\)

\(7.\)

\(15x^2-2x-1\)

\(=15x^2+3x-5x-1\)

\(=3x\left(5x+1\right)-1\left(5x+1\right)\)

\(=\left(5x+1\right)\left(3x-1\right)\)

\(8.\)

\(x^4-13x^2+36\)

\(=\left(x-3\right)\left(x^3+3x^2-4x-12\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x^2+5x+6\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

a)

$6x^2-x-x=6x^2-3x+2x-1=3x(2x-1)+(2x-1)=(2x-1)(3x+1)$

b)

$6x^2-6x-3=3(2x^2-2x-1)$

c)

$15x^2-2x-1=15x^2-5x+3x-1=5x(3x-1)+(3x-1)=(3x-1)(5x+1)$

d)

$2x^3-x^2+5x+3=2x^3+x^2-2x^2-x+6x+3$

$=x^2(2x+1)-x(2x+1)+3(2x+1)=(2x+1)(x^2-x+3)$

e)

$2x^3-5x^2+5x-3=2x^3-3x^2-2x^2+3x+2x-3$

$=x^2(2x-3)-x(2x-3)+(2x-3)=(2x-3)(x^2-x+1)$

AH
Akai Haruma
Giáo viên
7 tháng 1 2020

a)

$6x^2-x-x=6x^2-3x+2x-1=3x(2x-1)+(2x-1)=(2x-1)(3x+1)$

b)

$6x^2-6x-3=3(2x^2-2x-1)$

c)

$15x^2-2x-1=15x^2-5x+3x-1=5x(3x-1)+(3x-1)=(3x-1)(5x+1)$

d)

$2x^3-x^2+5x+3=2x^3+x^2-2x^2-x+6x+3$

$=x^2(2x+1)-x(2x+1)+3(2x+1)=(2x+1)(x^2-x+3)$

e)

$2x^3-5x^2+5x-3=2x^3-3x^2-2x^2+3x+2x-3$

$=x^2(2x-3)-x(2x-3)+(2x-3)=(2x-3)(x^2-x+1)$

3 tháng 7 2015

a) 4x(3x-7)-6(2x2-5x+1)=12

 =>4x.3x-4x.7-6.2x2-6.(-5x)-6.1=12

 =>12x2-28x-12x2+30x-6=12

 =>2x-6                         =12

 =>2x                            =12+6

 =>2x                            =18

 =>x                              =18:2

 =>x                              =6

b)(5x+3)(4x-1)+(10x-7)(-2x+3)=27

=>5x.4x-5x.1+3.4x+3.(-1)+10x.(-2x)+10x.3-7.-(2x)-7.3=27

=>20x2-5x+12x-3-20x2+30x+14x-21=27

=>39x-36                                      =27

=>39x                                          =27+36

=>39x                                          =63

=>x                                              =63:39

=>x                                              =21/13

c) (8x-5)(3x+2)-(12x+7)(2x-1)=17

=>8x.3x+8x.2-5.3x-5.2-12x.2x-12x.(-1)+7.2x+7.(-1)=17

=>24x2+16x-15x-10-24x2+12x+14x-7=17

=>27x-17                                        =17

=>27x                                            =17+17

=>27x                                            =34

=>x                                                =34:27

=>x                                                =34/27

d) (5x+9)(6x-1)-(2x-3)(15x+1)=-190

=>30x2-5x+63x-9 - 30x2-2x-45x-3=-190

=>11x-12                                   =-190

=>11x                                        =-190+12

=>11x                                        =-178

=>x                                            = -178:11

=>x                                            =-178/11

a: \(=\dfrac{6x^2+9x+8x+12}{2x+3}=\dfrac{3x\left(2x+3\right)+4\left(2x+3\right)}{2x+3}\)

=3x+4

b: \(=\dfrac{5x^2-2x+15x-6}{5x-2}\)

\(=\dfrac{x\left(5x-2\right)+3\left(5x-2\right)}{5x-2}=x+3\)

c: \(=\dfrac{-8x^2+20x+2x-5-10}{2x-5}=-4x+1+\dfrac{-10}{2x-5}\)

d: \(=\dfrac{14x^2-35x+2x-5}{2x-5}=\dfrac{7x\left(2x-5\right)+\left(2x-5\right)}{2x-5}\)

=7x+1

e: \(=\dfrac{2x^3+x^2+6x^2+3x+12x+6}{2x+1}\)

\(=\dfrac{x^2\left(2x+1\right)+3x\left(2x+1\right)+6\left(2x+1\right)}{2x+1}=x^2+3x+6\)

f: \(=\dfrac{x^3-2x^2+6x^2-12x+x-2}{x-2}=x^2+6x+1\)

g: \(=\dfrac{12x^3+6x^2-4x^2-2x+6x+3}{2x+1}=6x^2-2x+3\)