cho phân số a/b với b khác 0 cmr nếu a>b thì a/b >1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$\frac{a}{b}<1\Rightarrow a< b\Rightarrow a-b<0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}<0$ do $a-b<0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}<\frac{a+m}{b+m}$
b.
$\frac{a}{b}>1\Rightarrow a> b\Rightarrow a-b>0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}>0$ do $a-b>0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}>\frac{a+m}{b+m}$
kêu bn nhất sông núi ra chỉ cho vì phạm văn nhất chính là nhất sông núi mà
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 1 )
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Ta có:
\(2bd=c\left(b+d\right)\)
\(\Rightarrow\left(a+c\right).d=bc+cd\)
\(\Rightarrow ad+cd=bc+cd\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Vì đường thẳng d song song hoặc trùng với đường thẳng d1 : y = ax; đường thẳng d': y = a'x + b' song song hoặc trùng với đường thẳng d2 :
y = a'x nên Nếu d vuông góc với d' thì d1 vuông góc với d2
Nhận xét: d1 và d2 đều đi qua gốc O mà d1 vuông góc với d2 nên có 1 đường thẳng nằm trong góc phần tư thứ I và III ( giả sử là d1) ; đường thẳng còn lại nằm trong góc phần tư thứ II và IV . => a > 0 và a' < 0
Lấy H (1; 0). Qua H kẻ đường vuông góc với Ox cắt d1; d2 lần lượt tại B ; A
=> xA = xB = 1
A thuộc d2 => yA = a' ; B thuộc d1 => yB = a
=> HA = |a'|; HB = |a|
Áp dụng hệ thức lượng trong tam giác vuông AOB có: OH2 = HA . HB => 1 = |a|. |a'| => |a.a'| = 1 => a.a' = - 1 ( Vì a;a' trái dấu nên a.a' < 0)
Vậy....