K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

Hình vuông có đường chéo bằng 6 thì cạnh hình vuông bằng :

   A.           ;B. 9           ;C. 18           ;D. 6

Hình vuông có đường chéo bằng 6 thì cạnh hình vuông bằng :

   A.           ;B. 9           ;C. 18           ;D. 6

 Trả lời :

Hình vuông có đường chéo bằng 6 thì cạnh hình vuông bằng :

   A.   \(3\sqrt{2}\)        ;B. 9           ;C. 18           ;D. 6

học tốt

                 

11 tháng 7 2017

a)

Giải bài 79 trang 108 Toán 8 Tập 1 | Giải bài tập Toán 8

Gọi đường chéo của hình vuông có độ dài là a.

Áp dụng định lí Pi-ta-go ta có:

a2 = 32 + 32 = 18 suy ra a = √18 = 3√2

Vậy đường chéo của hình vuông đó bằng 3√2 (cm)

b)

Giải bài 79 trang 108 Toán 8 Tập 1 | Giải bài tập Toán 8

Gọi cạnh của hình vuông là a.

Áp dụng định lí Pi-ta-go ta có:

a2 + a2 = 22 ⇒ 2a2 = 4

⇒ a2 = 2 ⇒ a = √2

Vậy cạnh của hình vuông đó bằng √2 (dm).

18 tháng 10 2023

 Xét dãy số \(u_n=S_{A_nB_nC_nD_n}\). Ta có \(u_1=a^2\)

 Ta xét hình vuông có cạnh \(x\) (diện tích là \(x^2\)). Khi đó nửa độ dài đường chéo của hình vuông này sẽ là \(\dfrac{x}{\sqrt{2}}\). Khi đó diện tích của hình vuông mới là \(\left(\dfrac{x}{\sqrt{2}}\right)^2=\dfrac{x^2}{2}\) bằng 1 nửa diện tích hình vuông ban đầu. Như vậy, ta có mối quan hệ truy hồi: \(u_{n+1}=2u_n\). Dễ thấy đây là một cấp số nhân.

 Ta có \(\left(u_n\right):\left\{{}\begin{matrix}u_1=a^2\\u_{n+1}=2u_n\end{matrix}\right.\) 

\(\Rightarrow S_n=\sum\limits^{\infty}_{i=1}u_i=a^2\left(\sum\limits^{\infty}_{i=0}\dfrac{1}{2^i}\right)=2a^2\) 

(Đẳng thức quen thuộc \(\sum\limits^{\infty}_{i=0}\dfrac{1}{2^i}=2\))

Cho \(S_n=8\) \(\Rightarrow2a^2=8\Leftrightarrow a=2\).

Vậy \(a=2\) thỏa mãn ycbt.

26 tháng 12 2021

a: Độ dài đường chéo là \(5\sqrt{2}\left(cm\right)\)

27 tháng 3 2023

Diện tích của hình vuông: \(5\times5=25\left(dm^2\right)\)

Chiều dài đường chéo còn lại: \(25\times2:5=10\left(dm\right)\)

 

a: ABCD là hình vuông

=>AB=BC=CD=DA và \(\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{ADC}=90^0\) và AC là phân giác của \(\widehat{DAB}\) và DB là phân giác của góc ADC; BD là phân giác của góc ABC

AC là phân giác của góc DAB

=>\(\widehat{CAB}=\dfrac{1}{2}\widehat{DAB}=\dfrac{1}{2}\cdot90^0=45^0\)

AEBF là hình vuông

=>AB là phân giác của \(\widehat{FAE}\) và \(\widehat{FAE}=90^0\) 

=>\(\widehat{BAE}=\dfrac{1}{2}\cdot\widehat{EAF}=45^0\)

\(\widehat{BAE}=45^0\)

\(\widehat{BAC}=45^0\)

Do đó: \(\widehat{BAE}=\widehat{BAC}=45^0\)

=>AE và AC là hai tia trùng nhau

=>A,E,C thẳng hàng

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)

AEBF là hình vuông

=>BA là phân giác của góc EBF

=>\(\widehat{ABE}=\dfrac{1}{2}\cdot\widehat{FBE}=45^0\)

=>\(\widehat{ABE}=\widehat{ABD}\)

=>BE,BD là hai tia trùng nhau

=>B,E,D thẳng hàng

B,E,D thẳng hàng

A,E,C thẳng hàng

Do đó: BD cắt AC tại E

ADCB là hình vuông

=>AC=BD và AC vuông góc với BD tại trung điểm của mỗi đường

=>AC vuông góc BD tại E và E là trung điểm chung của AC và DB

E là trung điểm của AC nên AC=2AE=2(cm)

E là trung điểm của BD nên BD=2EB=2(cm)

Xét tứ giác ADCB có DB\(\perp\)AC

nên \(S_{ADCB}=\dfrac{1}{2}\cdot DB\cdot AC=\dfrac{1}{2}\cdot2\cdot2=2\left(cm^2\right)\)

b: ADCB là hình vuông

=>\(S_{ADCB}=AB^2\)

=>\(AB^2=2\)

=>\(AB=\sqrt{2}\left(cm\right)\)

16 tháng 2 2019

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Hình vuông có độ dài cạnh là a( cm )

Áp dụng định lý Py – to – go thì độ dài đường chéo của hình vuông là  a   2   (   c m   )

Do đó với a = 4 thì độ dài đường chéo là  4 2   =   32   (   c m   )

Chọn đáp án B.

24 tháng 4 2017

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Hình vuông có độ dài cạnh là a ( cm )

Áp dụng định lý Py – to – go thì độ dài đường chéo của hình vuông là  a   2 ( cm )

Do đó với a = 4 thì độ dài đường chéo là  4 2   =     32   (   c m   )

Chọn đáp án B.