Tìm m để 35m3 + 41n2 +13n - 2m để chia hết cho 5x - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=35x^3+41x^2+13x-2m\)
Để \(f\left(x\right)⋮\left(5x-2\right)\Rightarrow f\left(\dfrac{2}{5}\right)=0\)
\(\Rightarrow35.\left(\dfrac{2}{5}\right)^3+41.\left(\dfrac{2}{5}\right)^2+13.\left(\dfrac{2}{5}\right)-2m=0\)
\(\Leftrightarrow14-2m=0\)
\(\Leftrightarrow m=7\)
\(a,f\left(x\right):g\left(x\right)=\left(3x^4+9x^3+7x+2\right):\left(x+3\right)\\ =\left[3x^3\left(x+3\right)+7\left(x+3\right)-19\right]:\left(x+3\right)\\ =\left[\left(3x^3+7\right)\left(x+3\right)-19\right]:\left(x+3\right)\\ =3x^3+7.dư.19\)
\(c,\) Để \(k\left(x\right)⋮g\left(x\right)\Leftrightarrow-x^3-5x+2m=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\)
\(\Leftrightarrow-\left(-3\right)^3-5\left(-3\right)+2m=0\\ \Leftrightarrow27+15+2m=0\\ \Leftrightarrow2m=-42\\ \Leftrightarrow m=-21\)
Áp dụng định lý Bezout:
\(f\left(x\right)=x^3-3x^2+5x+2m\)chia hết cho g (x) = x + 1 nên:
\(f\left(-1\right)=0\)
\(\Rightarrow-1-3-5+2m=0\Leftrightarrow2m=9\Leftrightarrow m=\frac{9}{2}\)
Ta có 13n chia hết cho n-1
=> 13n-13+13 chia hết cho n-1
Do 13n-13=13(n-1) chia hết cho n
=>13 phải chia hết cho n-1
=> n-1thuộc {1;13;-1;-13}
=>n thuộc {2;14;0;-12}
Vậy n={2;14;0;-12}
tick nha
=>
h | |
hjhjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh | |
jjjjjjjjjjjj |
\(3n^2-13n+29=3n.\left(n-3\right)-4n+29\)
\(=3n.\left(n-3\right)-4.\left(n-3\right)+17=\left(3n-4\right).\left(n-3\right)+17\)
=> đề \(3n^2-13n+29⋮n-3\Rightarrow17⋮n-3\Rightarrow n-3\inƯ\left(17\right)=\left\{\pm1,\pm17\right\}\)
=> \(n\in\left\{4,2,-14,20\right\}\)
vì n là số nguyên dương => n\(\in\){4,2,20}
n2+13-13 chia hết cho n+3
=> n2-32+32 chia het cho n+3
=> (n+3)(n-3)+9 chia het cho n+3
Vi (n+3)(n-3) chia het cho n+3 nen 9 chia het cho n+3
=> n+3 thuoc{+1;-1;+3;-3;+9;-9}
=> n thuoc {-2;-4;0;-6;6;-12}