H = \(\frac{2x^2+2x}{^{ }x^2-1}\)+ \(\frac{1}{\sqrt{x}+1}\)- \(\frac{1}{\sqrt{x}-1}\)( x >= 0 ; x khác 1 )
a) Rút gọn H
b) Tìm tất cả các giá trị của x để \(\sqrt{x}\)< H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)
\(C=-x\sqrt{x}+x+\sqrt{x}-1\)
\(D=x-\sqrt{x}+1\)
Ta có: \(A=\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x-2}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{x-2}{x+\sqrt{x}+1}\right)\)
\(=\frac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-x+2}{x+\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{\sqrt{x}+3}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}\)
a, Ta có : \(A=\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{x-\sqrt{x}+2-\left(\sqrt{x}+1\right)}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{x-2\sqrt{x}+1}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{\left(\sqrt{x}-1\right)^2}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\frac{\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\frac{\left(x+2\sqrt{x}\right)}{\left(2x-2\sqrt{x}\right)}\)
=> \(A=\frac{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(2x-2\sqrt{x}\right)}\)
=> \(A=\frac{\left(\sqrt{x}-1\right)\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}\left(\sqrt{x}-1\right)}\)
=> \(A=\frac{\sqrt{x}+2}{2\sqrt{x}+2}\)
b, Ta có : \(A=\frac{\sqrt{x}+1+1}{2\left(\sqrt{x}+1\right)}=\frac{1}{2}+\frac{1}{2\left(\sqrt{x}+1\right)}\)
- Ta thấy : \(\sqrt{x}+1>0\)
=> \(\frac{1}{2\left(\sqrt{x}+1\right)}>0\)
=> \(\frac{1}{2\left(\sqrt{x}+1\right)}+\frac{1}{2}>\frac{1}{2}\)
=> \(A>\frac{1}{2}\) ( đpcm )
a/ ĐKXĐ: ...
\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)
\(\Rightarrow x+\frac{1}{4x}=a^2-1\)
Pt trở thành:
\(3a=2\left(a^2-1\right)-7\)
\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)
b/ ĐKXĐ:
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)
\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)
\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)
\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)
\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(H=\frac{2x^2+2x}{x^2-1}+\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow H=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow H=\frac{2x}{x-1}+\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow H=\frac{2x+\sqrt{x}-1-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow H=\frac{2x-2}{x-1}\)
\(\Leftrightarrow H=2\)
b) Để \(\sqrt{x}< H\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Leftrightarrow x< 4\)
Mà \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0\le x< 1\\1< x< 4\end{cases}}\)
p/s : vì đề bài không yêu cầu \(x\)nguyên nên mình làm như vậy !