tìm a,b biết rằng f(x) =x^4+1.Chia hết cho đa thức x^2+ax+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
Phần dư của phép chia f(x) cho g(x) là R = (a – 1)x + b + 30
Để phép chia trên là phép chia hết thì R = 0 với mọi x
ó (a – 1)x + b + 30 = 0 với mọi x
ó a - 1 = 0 b + 30 = 0 ó a = 1 b = - 30
Vậy a = 1; b = -30
Đáp án cần chọn là: D
Ta có
Phần dư của phép chia f(x) cho g(x) là R = (a – 3)x + b + 4. Để phép chia trên là phép chia hết thì R = 0, Ɐx
ó (a – 3)x + b + 4 = 0, Ɐx ó a - 3 = 0 b + 4 = 0
ó a = 3 b = - 4 => ab = -12
Đáp án cần chọn là: A
\(f\left(x\right)⋮g\left(x\right)\)
\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)
\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)
Đặt phép chia sau đo tính số dư
Vì x4+1 chia hết cho x2+ax +b ∀ x
⇒ số dư = 0 ⇒ từng cái = 0 ⇒ a= ; b =
A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)
B(x)=1-x^n/1-x
A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x
x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)
=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1
Đặt f(x)=\(\left(x^2+ax+b\right)\left(x^2+mx+n\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=\sqrt{2}\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=-\sqrt{2}\\b=1\end{cases}}\)
\(x^4+1=x^4+ax^3+bx^2-ax^3-a^2x^2-abx-bx^2-abx-b^2+a^2x^2+2abx+b^2+1\)
\(=x^2\left(x^2+ax+b\right)-ax\left(x^2+ax+b\right)-b\left(x^2+ax+b\right)+a^2x^2+2abx+b^2+1\)
\(=\left(x^2-ax-b\right)\left(x^2+ax+b\right)+\left(ax+b\right)^2+1\)
Ta có : \(x^4+1⋮x^2+ax+b\Leftrightarrow\left(ax+b\right)^2+1=0\)( phần dư = 0 )
Mà \(\left(ax+b\right)^2+1\ge1>0\)
Vậy không có a,b thỏa mãn đề bài