Tìm số nguyên n,biết:
a.(n+3).(n2+1)=0
b.(n-1).(n2-4)=0
Giúp mk với,ai nhanh mk tick nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\dfrac{\left(n+15\right)\left(15-n+1\right)}{2}=0\\ \Leftrightarrow\left[{}\begin{matrix}n=-15\\n=14\left(l\right)\end{matrix}\right.\Leftrightarrow n=-15\\ b,\Leftrightarrow\dfrac{\left(35+n\right)\left(35-n+1\right)}{2}=0\\ \Leftrightarrow\left[{}\begin{matrix}n=-35\left(n\right)\\n=34\left(l\right)\end{matrix}\right.\Leftrightarrow n=-35\)
a: (x+2)(x-3)>0
nên x+2;x-3 cùng dấu
=>x>3 hoặc x<-2
b: (x-1)(x+4)<=0
nên x-1 và x+4 khác dấu
=>-4<=x<=1
a, \(2x\left(x-3\right)-15+5x=0\\ \Rightarrow2x\left(x-3\right)-\left(15-5x\right)=0\\ \Rightarrow2x\left(x-3\right)-5\left(3-x\right)=0\\ \Rightarrow\left(2x+5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)
b, \(x^3-7x=0\\ \Rightarrow x\left(x^2-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm7\end{matrix}\right.\)
c, \(\left(2x-3\right)^2-\left(x+5\right)^2=0\\ \Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\\ \Rightarrow\left(x-8\right)\left(3x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Xem lại đề câu d
a) \(\left(n+3\right)\left(n^2+1\right)=0\)
\(\Rightarrow n+3=0\Rightarrow n=-3\)(do \(n^2+1\ge1>0\))
b) \(\left(n-1\right)\left(n^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}n=1\\n=-2\\n=2\end{matrix}\right.\)
\(a,\Leftrightarrow\left[{}\begin{matrix}n+3=0\\n^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=-3\left(tm\right)\\n^2=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow n=-3\\ b,\Leftrightarrow\left[{}\begin{matrix}n-1=0\\n^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=2\\n=-2\end{matrix}\right.\)
Ta có:
n2 + 2n - 3
= n2 + 3n - n - 3
= n(n + 3) - (n + 3)
= (n - 1)(n + 3)
Nên: n2 + 2n - 3 : n - 1
= (n - 1)(n + 3) : (n - 1)
= n + 3
Vậy với mọi x ∈ Z thì n2 + 2n - 3 : n - 1 luôn nguyên
ĐK : n nguyên và n khác 1
\(n^2+2n-3=n\left(n-1\right)+3\left(n-1\right)\\ =\left(n-1\right)\left(n+3\right)\)
Để n^2 + 2n - 3 chia hết cho n - 1
Thì : (n-1)(n+3) chia hết cho n - 1
Mà : (n-1)(n+3) luôn chia hết cho n - 1 với mọi n nguyên và n khác 1
Vậy n thuộc Z, n khác 1
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
a.(n+3).(n2+1)=0
\(\Leftrightarrow n+3=0;n^2+1=0\)
TH1:n+3=0
\(\Rightarrow\)n=0-3
\(\Rightarrow\)n=-3
TH2:n2+1=0
\(\Rightarrow\)n2=-1
\(\Rightarrow\)n=\(\varnothing\)
Vậy n=-3
nhớ k mk nha
a, (n+3)(n2+1)=0
n=3 (vì n2+1 lớn hơn 0)
b, (n-1)(n2-4)=0
suy ra n-1=0 hoặc n2-4=0
suy ra n=1 hoặc n2=4
suy ra n=1 hoặc n=4