K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

1-3x<0

<=> -3x<-1

<=> x> -1/-3

<=> x> 1/3

2 tháng 4 2020

1-3x<0

<=> -3x<-1

<=> x<\(\frac{-1}{-3}\)

<=> x<\(\frac{1}{3}\)

22 tháng 4 2022

Bài 1: 

c) |2x - 1| = x + 2

<=> 2x - 1 = +(x + 2) hoặc -(x + 2)

* 2x - 1 = x + 2      

<=> 2x - x = 2 + 1

<=> x = 3

* 2x - 1 = -(x + 2)

<=> 2x - 1 = x - 2

<=> 2x - x = -2 + 1

<=> x = -1

Vậy.....

30 tháng 3 2018

3x-5>-2x+5

⇔ 3x+2x > 5+5

⇔ 5x >5

⇔ x>1

vậy bpt có tập nghiệm là S={ x/ x>1}

26 tháng 4 2021

2x-x(3x+1)≤15-3x(x+2)

2x-3x2-x≤15-3x-6x

2x-3x2-x+3x2 +6x≤15

7x≤15

x≤15/7

 

 

Đặt \(x^2+3x=a\left(a>=-\dfrac{9}{4}\right)\)

BPT sẽ trở thành \(a>=2+\sqrt{5a+14}\)

=>\(a-2>=\sqrt{5a+14}\)

=>\(\sqrt{5a+14}< =a-2\)

=>\(\left\{{}\begin{matrix}a-2>=0\\5a+14< =\left(a-2\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a>=2\\5a+14-a^2+4a-4< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a>=2\\-a^2+9a+10< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a>=2\\a^2-9a-10>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a>=2\\\left(a-10\right)\left(a+1\right)>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a>=2\\\left[{}\begin{matrix}a>=10\\a< =-1\end{matrix}\right.\end{matrix}\right.\)

=>a>=10

=>\(x^2+3x>=10\)

=>\(x^2+3x-10>=0\)

=>(x+5)(x-2)>=0

=>\(\left[{}\begin{matrix}x>=2\\x< =-5\end{matrix}\right.\)

3 tháng 4 2020

Ôn tập: Phương trình bâc nhất một ẩncòn câu b nx ạ. Giupp mình vs. Mình cammon nhiuu

24 tháng 1 2022

\(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0.\)

\(x\)\(-\infty\)                \(-1\)                 \(\dfrac{2}{3}\)                     \(3\)                         \(+\infty\)
\(x-3\)          -               |         -           |        -             0             -
\(x+1\)          -              0         +           |       +              |            +
\(2-3x\)          +              |        +            0       -             |             -
\(\left(x-3\right)\left(x+1\right)\left(2-3x\right).\)            +            0        -           0         +           0             +

 

Vậy \(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0\) khi \(x\in\left(-\infty;-1\right)\cup\left(\dfrac{2}{3};3\right)\cup\left(3;+\infty\right).\)

 

20 tháng 2 2021

ĐK: \(x\ne\dfrac{1}{2};x\ne-\dfrac{1}{3}\)

\(\dfrac{x+2}{3x+1}\ge\dfrac{x-2}{2x-1}\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(2x-1\right)-\left(x-2\right)\left(3x+1\right)}{\left(3x+1\right)\left(2x-1\right)}\ge0\)

\(\Leftrightarrow\dfrac{2x^2+3x-2-3x^2+5x+2}{6x^2-x-1}\ge0\)

\(\Leftrightarrow\dfrac{-x^2+8x}{6x^2-x-1}\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x^2+8x\ge0\\6x^2-x-1>0\end{matrix}\right.\left(1\right)\) hoặc \(\left\{{}\begin{matrix}-x^2+8x\le0\\6x^2-x-1< 0\end{matrix}\right.\left(2\right)\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}0\le x\le8\\\left[{}\begin{matrix}x>\dfrac{1}{2}\\x< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x\le8\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le0\\x\ge8\end{matrix}\right.\\-\dfrac{1}{3}< x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow-\dfrac{1}{3}< x\le0\)

Vậy ...