Cho tam giác ABC, M là trung điểm BC. Chứng minh: AB2 + AC2 =2AM2 BC2/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham Khảo e nhá chj ngu ném ko bik làm☹
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-m-la-trung-diem-bc-chung-minh-ab2-ac2-2am2-bc22.249563555147
Kẻ AH vuông góc BC.
Xét tam giác AHM vuông tại H (^AHM = 900) có:
AM2 = AH2 + HM2 (định lý Pytago).
Xét tam giác AHB vuông tại H (^AHB = 900) có:
AB2 = AH2 + BH2 (định lý Pytago).
Xét tam giác AHC vuông tại H (^AHC = 900) có:
AC2 = AH2 + CH2 (định lý Pytago).
Ta có: BH = BM - HM.
CH = CM + HM.
Vì M là trung điểm của BC (gt) => BM = CM; BM = \(\dfrac{BC}{2}\) => BM2 = \(\dfrac{BC^2}{4}\).
Ta có: AB2 + AC2 = AH2 + BH2 + AH2 + CH2.
AB2 + AC2 = AH2 + AH2 + BH2 + CH2.
= 2AH2 + (BM - HM)2 + (CM + HM)2.
= 2AH2 + BM2 - 2BM.HM + HM2 + CM2 + 2CM.HM + HM2.
= 2AH2 + BM2 - 2BM.HM + HM2 + BM2 + 2BM.HM + HM2.
= 2AH2 + 2HM2 + 2BM2.
= 2(AH2 + HM2) + 2\(\dfrac{BC^2}{4}\).
AB2 + AC2 = 2AM2 + \(\dfrac{BC^2}{2}\) (đpcm).
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
Câu 20: Tam giác ABC vuông tại B suy ra:
A. AC2 = AB2 + BC2 B. AC2 = AB2 - BC2
C. BC2 = AB2 + AC2 D. AB2 = BC2 + AC2
Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?
A. Tại B B. Tại C
C. Tại A D. Không phải là tam giác vuông
Câu 22: Cho ABC có = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:
A. 6,5 cm B. 5,5 cm C. 6 cm D. 6,2 cm
Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:
A. 3cm, 4dm, 5cm. B. 5cm, 14cm, 12cm.
C. 5cm, 5cm, 8cm. D. 9cm, 15cm, 12cm.
Câu 24: Cho ABC có AB = AC và = 600, khi đó tam giác ABC là:
A. Tam giác vuông B. Tam giác cân
C. Tam giác đều D. Tam giác vuông cân
Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:
A. ∠A ≤ 900 B. ∠A > 900 C. ∠A < 900 D. ∠A = 900
Kẻ đường cao BH
Xét tam giác ABH vuông tại H có ∠(BAC) = 60 0
BH = AB.sin A = AB.sin 60 0 = (AB 3 )/2
AH = AB.cos A = AB.cos 60 0 = AB/2
Xét tam giác BHC vuông tại H có:
B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2
= B H 2 + A C 2 - 2 A C . A H + A H 2
Vậy được điều phải chứng minh.
Kẻ đường cao BH của tam giác ABC thì H nằm trên tia AC (để ∠ (BAC) = 60 ° là góc nhọn), do đó H C 2 = A C - A H 2 (xem h.bs.8a, 8b)
Công thức Py-ta-go cho ta
B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2 = B H 2 + A C 2 + A H 2 - 2 A C . A H = A B 2 + A C 2 - 2 A C . A H
Do ∠ (BAC) = 60 ° nên AH = AB.cos 60 ° = AB/2, suy ra B C 2 = A B 2 + A C 2 - A B . A C
a, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{BC}^2\)
\(\Leftrightarrow AC^2+AB^2-2\overrightarrow{AB}.\overrightarrow{AC}=BC^2\)
\(\Leftrightarrow2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}=\dfrac{5^2+8^2-7^2}{2}=20\)
b, \(2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-BC^2=CA^2\)
\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2}{2}=\dfrac{8^2}{2}=32\)
Lời giải:
a)
\(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\)
\(\Rightarrow (\overrightarrow{AC}-\overrightarrow{AB})^2=\overrightarrow{BC}^2\Leftrightarrow AB^2+AC^2-2\overrightarrow{AC}.\overrightarrow{AB}=BC^2\)
\(\Leftrightarrow 2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\) (đpcm)
Ta có:
\(\overrightarrow{AB}.\overrightarrow{AC}=\frac{AB^2+AC^2-BC^2}{2}=\frac{5^2+8^2-7^2}{2}=20\)
\(\cos \angle A=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\frac{20}{5.8}=\frac{1}{2}\)
\(\Rightarrow \angle A=60^0\)
b)
Tương tự phần a, \(\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-AB^2}{2}=\frac{8^2+7^2-5^2}{2}=44\)
-Kẻ BH vuông góc với AM; CK vuông góc với AM(H,K thuộc AM). => BHCK là hình bình hành
=> BH= CK; M là trung điểm của BC nên cũng là trung điểm của HK.
-Áp dụng định lý Pytago vào tam giác AHB vuông tại H; tam giác BHM vuông tại H; tam giác AKC vuông tại K, ta có: AH^2+ BH^2=AB^2.
BH^2+HM^2=BM^2.
AK^2+KC^2=AC^2.
-Từ các điều ở trên ta có : BH^2+HM^2= (BC/2)^2.
=> 4.BH^2+4.HM^2 =BC^2.
=> 2.BH^2= (BC^2)/2 -2.HM^2.
=> 2.BH^2+4.HM^2= 2.HM^2+ (BC^2)/2.
=> 2.BH^2+2.AH^2 +4.HM^2+ 4.AH.HM= 2.AH^2+ 2.HM^2+ 4.AH.HM+ (BC/2)^2.
=> BH^2+CK^2+ AH^2+( AH^2+4.HM^2+ 4.AH.HM) =2.(AH^2+ HM^2+2.AH.HM) +(BC/2)^2.
=> BH^2+ AH^2+ CK^2+(AH^2+ HK^2+ 2.AH.HK) = 2.AM^2+ (BC/2)^2.
=> AB^2+ (CK^2+ AK^2)= 2.AM^2 + (BC/2)^2.
=> AB^2+AC^2= 2.AM^2 + (BC/2)^2 (đpcm).
Tham khảo nha bn
KẺ BH VUÔNG GÓC VỚI AM ; CK VUÔNG GÓC VỚI AM ( H.K THUỘC AM ) = > BHCK LÀ HINHFD BÌNH HÀNH = > BH = CK ; M ; LÀ TRUNG ĐIỂM CỦA BC NÊN CŨNG LÀ TRUNG ĐIỂM CỦA HK . - ÁP DỤNG ĐỊNH LÝ PYTAGO VÀO TAM GIÁC AHB VUÔNG TẠI H ; TAM GIÁC BHM VUÔNG TẠI H ; TAM GIÁC AKC VUÔNG TẠI K