Cho các số x,y,z >2 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) CMR:
(x-2)(y-2)(z-2)<=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x,y,z>0 và x+y+z=4. CMR \(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)
\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)
Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)
bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
Theo giả thiết \(\frac{1}{x}=\frac{1}{2}-\frac{1}{y}+\frac{1}{2}-\frac{1}{z}=\frac{y-2}{y}+\frac{z-2}{z}\)
Áp dụng BĐT Cosi
\(\frac{1}{x}=\frac{y-2}{y}+\frac{z-2}{z}\ge2\sqrt{\frac{\left(y-2\right)\left(z-2\right)}{yz}}\left(1\right)\)
Cmtt ta được \(\frac{1}{y}=\frac{x-2}{x}+\frac{z-2}{z}\ge2\sqrt{\frac{\left(x-2\right)\left(z-2\right)}{yz}}\left(2\right)\)
\(\frac{1}{z}=\frac{x-2}{x}+\frac{y-2}{y}\ge2\sqrt{\frac{\left(x-2\right)\left(y-2\right)}{xy}}\left(3\right)\)
Nhân từng vế của (1)(2)(3) ta được đpcm
bạn ơi bạn giải thích nốt cho mình với