K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC cân tại A có góc ở đáy bằng 50˚, lấy điểm K nằm trong tam giác sao cho góc KBC=10˚, góc KCB = 30˚. Tính số đo các góc tam giác ABK ?Bài 2: Trong hình vuông ABCD lấy điểm M sao cho góc MAB = 60˚, góc MCD = 15˚. Tính góc MBC ?Bài 3: Cho tam giác có góc ABC = 70˚, góc ACB = 50˚, trên cạnh AB lấy M sao cho góc MCB = 40˚, trên cạnh AC lấy điểm N sao cho góc NBC = 50˚. Hãy tính góc NMC ?Bài 4: Cho tam...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có góc ở đáy bằng 50˚, lấy điểm K nằm trong tam giác sao cho góc KBC=10˚, góc KCB = 30˚. Tính số đo các góc tam giác ABK ?

Bài 2: Trong hình vuông ABCD lấy điểm M sao cho góc MAB = 60˚, góc MCD = 15˚. Tính góc MBC ?

Bài 3: Cho tam giác có góc ABC = 70˚, góc ACB = 50˚, trên cạnh AB lấy M sao cho góc MCB = 40˚, trên cạnh AC lấy điểm N sao cho góc NBC = 50˚. Hãy tính góc NMC ?

Bài 4: Cho tam giác ABC cân tại A, dựng trung tuyến AM và phân giác AD, tính các góc của tam giác ABC biết BD = 2AM

Bài 5: Cho tam giác ABC có góc ABC = 45˚, góc ACB = 120˚, trên tia đối tia CB lấy điểm D sao cho CD = 2CB. Tính góc ADB ?

Bài 6: Tam giác ABC cân tại A có góc A = 20˚, các điểm M,N theo thứ tự thuộc các cạnh AB, AC sao cho góc BCM = 50˚, góc CBN = 60˚. Tính góc MNA ?

2
8 tháng 1 2016

dang tung bai di ban 

nhin thay ngai qua

30 tháng 10

Không làm mà đòi có ăn

 

6 tháng 12 2021

Kẻ  AH \(\perp\) BC.

Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).

=> AH là trung tuyến (Tính chất các đường trong tam giác cân).

=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.

Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.

Mà ^BAD = 36o (gt).

=> ^ABC = ^BAD = 36o.

Mà 2 góc này ở vị trí so le trong.

=> AD // BC (dhnb).

Mà AH \(\perp\) BC (cách vẽ).

=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.

Kẻ MH // DB; M \(\in\) AD. 

Xét tứ giác DMHB có: 

+ MH // DB (cách vẽ).

+ MD // HB (do AD // BC).

=> Tứ giác DMHB là hình bình hành (dhnb). 

=> MH = DB và MD = BH (Tính chất hình bình hành).

Ta có: AD = MD + AM.

Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).

=> AM = b - \(\dfrac{1}{2}\)a.

Xét tam giác AHB vuông tại H có:

AB2 = AH+ BH2 (Định lý Py ta go).

Thay: b2 = AH+ ( \(\dfrac{1}{2}\)a)2.

<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.

<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).

Xét tam giác MAH vuông tại A (^MAH = 90o) có:

\(MH^2=AM^2+AH^2\) (Định lý Py ta go).

Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.

 MH2 = b2  - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.

MH2 = 2b2 - ab.

MH = \(\sqrt{2b^2-ab}\).

Mà MH = BD (cmt).

=> BD = \(\sqrt{2b^2-ab}\).

Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.

 

 

28 tháng 2 2020

b2 :

a, xét tam giác ABD và tam giác ACE có: góc A chung

AB = AC do tam giác ABC cân tại A (gt)

góc ADB = góc AEC = 90

=> tam giác ABD = tam giác ACE (ch-cgv)

b, tam giác ABD = tam giác ACE (câu a)

=> góc ABD = góc ACE (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc HBC = góc ABC - góc ABD

góc HCB = góc ACB - góc ACE 

=> góc HBC = góc HCB 

=> tam giác HBC cân tại H (Dh)

còn câu 1