K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

a) ĐK: `a >0`

`P=(a^2+\sqrta)/(a-\sqrta+1)-(2a+\sqrta)/(\sqrta)+1`

`=(\sqrta(\sqrt(a^3)+1^3))/(a-\sqrta+1)-(\sqrta(2\sqrta+1))/(\sqrta)+1`

`=(\sqrta(\sqrta+1)(a-\sqrta+1))/(a-\sqrta+1)-(2\sqrta+1)+1`

`=a+\sqrta-2\sqrta-1+1`

`=a-\sqrta`

b) `P=a-\sqrta`

`=(\sqrta)^2-2.\sqrta .1/2 + (1/2)^2 -1/4`

`=(\sqrta-1/2)^2 -1/4 ≥ -1/4`

`=> P_(min) =-1/4 <=> a=1/4`

AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 1:

\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)

\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)

Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm

\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 2:

\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)

Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định

\(\Rightarrow 2-(a-1)^2\leq 2\)

\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)

Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

2 tháng 12 2017

Amin=-2 . Đạt được khi x=0

12 tháng 6 2018

\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

\(\Rightarrow A=\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\)

\(\Rightarrow A=1-\frac{3}{\sqrt{x}+1}\)

ĐỂ A có \(GTNN\Rightarrow\frac{3}{\sqrt{x}+1}LN\)

\(\Rightarrow\sqrt{x}+1\)là số nguyên dương nhỏ nhất có thể

\(\Rightarrow\sqrt{x}+1=1\)

\(\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

\(\Rightarrow A=\frac{\sqrt{x}-2}{\sqrt{x+1}}=\frac{\sqrt{0}-2}{\sqrt{0}+1}\)

\(\Rightarrow A=\frac{-2}{1}=-2\)

3 tháng 9 2016

1,

Có \(\sqrt{x}\ge0\)với mọi x

=> 2 + \(\sqrt{x}\ge\)2 với mọi x

=> A \(\ge\)2 với mọi x

Dấu "=" xảy ra <=> \(\sqrt{x}=0\)<=> x = 0

KL: Amin = 2 <=> x = 0

2, (câu này phải là GTLN chứ nhỉ)

Có \(\sqrt{x-1}\ge0\)với mọi x

=> \(2.\sqrt{x-1}\ge0\)với mọi x

=> \(5-2.\sqrt{x-1}\le5\)với mọi x

=> B \(\le\)5 với mọi x

Dấu "=" xảy ra <=> \(\sqrt{x-1}=0\)<=> x - 1 = 0 <=> x = 1

KL Bmax = 5 <=> x = 1

\(\sqrt{x}\ge0\)

\(\Rightarrow A=2+\sqrt{x}\ge2+0\ge2\)

\(MinA=2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)

2) \(5-2\sqrt{x-1}\le5\)

\(MinA=5\Leftrightarrow x-1=0\Rightarrow x=1\)

b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)

\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)

\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)