Cho A= \(\frac{12x^2}{x+3}\)Tìm các giá trị của x để A<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(=\frac{x^2+3}{\left|x\right|}+\left|x-2\right|=\left|x\right|+\frac{3}{\left|x\right|}+ \left|x-2\right|\)
b) A nhận gt nguyên khi |x| thuộc Ư(3) (các ước dương)
=> |x| thuộc {1;3} => x thuộc {-3;-1;1;3}
Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)
\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)
Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)
Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)
a, A = \(\dfrac{12x-2}{4x+1}\)
2\(x\) - 4 = 0 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 = 2
Giá trị của A tại 2\(x\) - 4 = 0 là giá trị của A tại \(x\) = 2
A = \(\dfrac{12\times2-2}{4\times2+1}\) = \(\dfrac{22}{9}\)
b, A = 1 \(\Leftrightarrow\) \(\dfrac{12x-2}{4x+1}\) = 1
12\(x\) - 2 = 4\(x\) + 1
12\(x\) - 4\(x\) = 1 + 2
8\(x\) = 3
\(x\) = \(\dfrac{3}{8}\)
c, A \(\in\) Z ⇔ 12\(x\) - 2 ⋮ 4\(x\) + 1
12\(x\) + 3 - 5 ⋮ 4\(x\) + 1
3.(4\(x\) + 1) - 5 ⋮ 4\(x\) + 1
5 ⋮ 4\(x\) + 1
Ư(5) ={-5; -1; 1; 5}
Lập bảng ta có:
\(4x+1\) | -5 | -1 | 1 | 5 |
\(x\) | -3/2 | -1/2 | 0 | 1 |
Vậy \(x\) \(\in\) {0; 1}
a: \(A=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{12x^2}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{-x^2-6x-9+x^2-6x+9-12x^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-\left(x+1\right)}{x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-12x^2-12x}\)
\(=\dfrac{-\left(x+1\right)\cdot\left(x+3\right)}{-12x^2\left(x+1\right)}=\dfrac{x+3}{12x^2}\)
b: Ta có: |2x-1|=5
=>2x-1=5 hoặc 2x-1=-5
=>x=-2
Thay x=-2 vào A, ta được:
\(A=\dfrac{-2+3}{12\cdot\left(-2\right)^2}=\dfrac{1}{48}\)
c: Để \(A=\dfrac{2x+1}{x^2}\) thì \(\dfrac{x+3}{12x^2}=\dfrac{2x+1}{x^2}\)
=>x+3=24x+12
=>24x+12=x+3
=>23x=-9
hay x=-9/23
d: Để A<0 thì x+3<0
hay x<-3
\(A=\frac{12x^2}{x+3}\)
\(12x^2\ge0\forall x\Rightarrow A< 0\Leftrightarrow x+3< 0\)
\(\Leftrightarrow x< -3\)
~~