Cho tam giác ABC cân tại A. Vẽ phân giác trong góc B cắt phân giác ngoài của góc A tại I. Chứng minh:
a, AI song song BC
b, Tam giác ABI cân
Mik cần gấp, giúp mik nhé
Cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề câu b thành: CM △ABI cân
a, Vì △ABC cân tại A => ABC = ACB
Xét △ABC có tAC là góc ngoài của tam giác tại đỉnh A
Nên: tAC = ABC + ACB
=> tAC = 2 . ABC
Vì AI là tia phân giác của tAC
=> A1 = A2 = tAC : 2 = (2 . ABC) : 2 = ABC
=> A1 = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> AI // BC (dhnb)
b, Vì BI là tia phân giác của ABC
=> B1 = B2 = ABC : 2
Vì AI // BC (cmt)
=> AIB = B2 (2 góc so le trong)
Mà B1 = B2 (cmt)
=> AIB = B1
=> △ABI cân tại A
Câu hỏi của ★VɪᎮεr★ - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link: Câu hỏi của ★VɪᎮεr★ - Toán lớp 7 - Học toán với OnlineMath
CM: Ta có: \(\widehat{CAx}\)là góc ngoài của t/giác ABC
=> \(\widehat{CAx}=\widehat{B}+\widehat{C}=2\widehat{C}\)
=> \(\frac{1}{2}\widehat{CAx}=\widehat{A1}=\widehat{A2}=\widehat{C}\)
mà \(\widehat{A2}\)và \(\widehat{C}\)ở vị trí so le trong
=> AI // BC
b) Ta có: AI // BC(cmt) => \(\widehat{I}=\widehat{B2}\)(so le trong)
Mà \(\widehat{B1}=\widehat{B2}\)(gt)
=> \(\widehat{I}=\widehat{B1}\) => t/giác ABI cân tại A