Cho\(1\le a\le5\) Chứng minh \(3\sqrt{a-1}+4\sqrt{5-a}\le10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(b\ge0\Rightarrow b^3+1\ge1\Rightarrow a\sqrt{b^3+1}\ge a\)
Hoàn toàn tương tự: \(b\sqrt{c^3+1}\ge b\) ;\(c\sqrt{a^3+1}\ge c\)
Cộng vế:
\(P\ge a+b+c=3\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và hoán vị
Lại có:
\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\dfrac{a\left(b^2+2\right)}{2}\)
Tương tự: \(b\sqrt{c^3+1}\le\dfrac{b\left(c^2+2\right)}{2}\) ; \(c\sqrt{a^3+1}\le\dfrac{c\left(a^2+2\right)}{2}\)
\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+a+b+c=\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)
\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2+2abc\right)+3\)
Nên ta chỉ cần chứng minh: \(Q=ab^2+bc^2+ca^2+2abc\le4\)
Không mất tính tổng quát, giả sử \(a=mid\left\{a;b;c\right\}\)
\(\Rightarrow\left(a-b\right)\left(a-c\right)\le0\Leftrightarrow a^2+bc\le ab+ac\)
\(\Rightarrow ca^2+bc^2\le abc+ac^2\)
\(\Rightarrow Q\le ab^2+ac^2+2abc=a\left(b+c\right)^2=\dfrac{1}{2}.2a\left(b+c\right)\left(b+c\right)\le\dfrac{1}{54}\left(2a+2b+2c\right)^3=4\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;2;0\right)\) và 1 số hoán vị của chúng
\(3\sqrt{a-1}+4\sqrt{5-a}\le10\)(1)
<=> \(9a-9+80-16a+24\sqrt{-a^2+6a-5}\le100\)
<=> \(24\sqrt{-a^2+6a-5}\le29+7a\)
<=> \(-576a^2+3456a-2880\le841+406a+49a^2\)
<=> \(625a^2-3050a+3721\ge0\)
<=> \(\left(25a-61\right)^2\ge0\)đúng với mọi \(1\le a\le5\)
Vậy (1) đúng với mọi a sao cho \(1\le a\le5\)
Dấu "=" xảy ra khi và chỉ khi a = 61/25
Với \(1\le a\le5\)
Áp dụng BĐT Cauchy ta có:
\(\left(3\sqrt{a-1}+4\sqrt{5-a}\right)^2\le\left(3^2+4^2\right)\left(a-1+5-a\right)=4\cdot25=100\)
\(\Rightarrow3\sqrt{a-1}+4\sqrt{5-a}\le10\)
=> đpcm