K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)

\(\frac{2}{x-3}+\frac{x-5}{x-1}=1\)

\(\Leftrightarrow\frac{2}{x-3}=1-\frac{x-5}{x-1}\)

\(\Leftrightarrow\frac{2}{x-3}=\frac{x-1-x+5}{x-1}\)

\(\Leftrightarrow\frac{2}{x-3}=\frac{4}{x-1}\)

\(\Leftrightarrow x-1=2\left(x-3\right)\)

\(\Leftrightarrow x-1=2x-6\)

\(\Leftrightarrow x=5\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{5\right\}\)

a: \(\Leftrightarrow\dfrac{15-2x-1}{5}>\dfrac{x+3}{4}\)

\(\Leftrightarrow\dfrac{-8x+56}{20}>\dfrac{5x+15}{20}\)

=>-8x+56>5x+15

=>-11x>-41

hay x<41/11

b: \(\Leftrightarrow\dfrac{5x+5-6}{6}< \dfrac{4x+4}{6}\)

=>5x-1<4x+4

=>x<5

10 tháng 1 2022

 \(3-\dfrac{2x+1}{5}>x+\dfrac{3}{4}.\)

\(\Leftrightarrow\dfrac{14-2x}{5}-x-\dfrac{3}{4}>0.\)

\(\Leftrightarrow\dfrac{56-8x-20x-15}{20}>0.\)

\(\Rightarrow-28x+41>0.\)

\(\Leftrightarrow-28x>-41.\)

\(\Leftrightarrow x< \dfrac{41}{28}.\)

 

30 tháng 9 2021

a. \(x^2-2\sqrt{5}x+5=0\)

<=> \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=0\)

<=> \(\left(x-\sqrt{5}\right)^2=0\)

<=> \(x-\sqrt{5}=0\)

<=> \(x=\sqrt{5}\)

b. \(\sqrt{x+3}=1\)    ĐK: x \(\ge-3\)

<=> x + 3 = 12

<=> x = 1 - 3

<=> x = -2 (TM)

a: Ta có: \(x^2-2x\sqrt{5}+5=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: Ta có: \(\sqrt{x+3}=1\)

\(\Leftrightarrow x+3=1\)

hay x=-2

7 tháng 4 2021

a) 5(x-1)(x+1)=5x^2+3x-2

<=> (5x-5)(x+1) = (x+1)(5x-2)

<=> (x+1)(5x-5) - (x+1)(5x-2)=0

<=> (x+1)(5x-5-5x+2)=0

<=> (x+1).(-3)=0

<=> x+1=0<=> x=-1

7 tháng 4 2021

b) 6 - |2x-1|=3

<=> |2x-1|=3

<=> 2x-1=3 hoặc 2x-1=-3

TH1: 2x-1=3 <=>2x=4<=> x=2

TH2: 2x-1=-3 <=> 2x=-2 <=> x=-1

18 tháng 1 2022

\(\text{2x - (x - 3)(5 - x) = (x+4)}^2.\)

\(\Leftrightarrow2x-\left(5x-x^2-15+3x\right)=x^2+8x+16.\)

\(\Leftrightarrow2x-5x+x^2+15-3x-x^2-8x-16=0.\)

\(\Leftrightarrow-14x-1=0.\Leftrightarrow x=\dfrac{-1}{14}.\)

\(\text{(4x + 1)(x - 2) + 25 = (2x+3)}^2-4x.\)

\(\Leftrightarrow4x^2-8x+x-2+25=4x^2+12x+9-4x.\)

\(\Leftrightarrow-15x+14=0.\Leftrightarrow x=\dfrac{14}{15}.\)

9 tháng 5 2021

a. \(\dfrac{-3}{x^2-9}+\dfrac{5}{3-x}=\dfrac{2}{x+3}\)

<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5}{x-3}=\dfrac{2}{x+3}\)

<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5\left(x+3\right)}{x^2-9}=\dfrac{2\left(x-3\right)}{x^2-9}\)

<=> \(-3+\left(-5\right)\left(x+3\right)=2\left(x-3\right)\)

<=> -3 + (-5x) + (-15) = 2x - 6

<=> -5x -2x = 15 - 6 + 3

<=> -7x = 12

<=> x = \(\dfrac{-12}{7}\)

Vậy ........

b. \(\left|x+5\right|=2x-1\)

Nếu x \(\ge\) -5 => \(\left|x+5\right|\) = x + 5

Nếu x < -5 => \(\left|x+5\right|\) = -(x + 5)

TH1: Nếu x \(\ge\) -5

<=> x + 5 = 2x - 1

<=> x - 2x = -1 - 5

<=> -x = -6 

<=> x = 6

TH2: Nếu x < -5 

<=> -(x + 5) = 2x - 1

<=> -x - 5 = 2x - 1

<=> -5 + 1 = 2x + x

<=> -4 = 3x

<=> x = \(\dfrac{-4}{3}\)

Vậy .........

c. Bạn tự giải câu này nhé (có thể tách các hạng tử rồi tính)

9 tháng 5 2021

bạn giải giúp mk câu C đi mk hok ko giỏi toán khocroi

a) Ta có: (5x-1)(x-3)<0

nên 5x-1 và x-3 trái dấu

Trường hợp 1:

\(\left\{{}\begin{matrix}5x-1>0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x< 3\end{matrix}\right.\Leftrightarrow\dfrac{1}{5}< x< 3\)

Trường hợp 2:

\(\left\{{}\begin{matrix}5x-1< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>3\end{matrix}\right.\Leftrightarrow loại\)

Vậy: S={x|\(\dfrac{1}{5}< x< 3\)}

9 tháng 6 2021

a) \(2\chi-3=3\left(\chi+1\right)\)

\(\Leftrightarrow2\chi-3=3\chi+3\)

\(\Leftrightarrow2\chi-3\chi=3+3\)

\(\Leftrightarrow\chi=-6\)

Vậy phương trình có tập nghiệm S= \(\left\{-6\right\}\)

\(3\chi-3=2\left(\chi+1\right)\)

\(\Leftrightarrow3\chi-3=2\chi+2\)

\(\Leftrightarrow3\chi-2\chi=2+3\)

\(\Leftrightarrow\chi=5\)

Vậy phương trình có tập nghiệm S= \(\left\{5\right\}\)

b) \(\left(3\chi+2\right)\left(4\chi-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+2=0\\4\chi-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-2\\4\chi=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-2}{3}\\\chi=\dfrac{5}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-2}{3};\dfrac{5}{4}\right\}\)

\(\left(3\chi+5\right)\left(4\chi-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+5=0\\4\chi-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-5\\4\chi=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-5}{3}\\\chi=\dfrac{1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-5}{3};\dfrac{1}{2}\right\}\)

c) \(\left|\chi-7\right|=2\chi+3\)

Trường hợp 1: 

Nếu \(\chi-7\ge0\Leftrightarrow\chi\ge7\)

Khi đó:\(\left|\chi-7\right|=2\chi+3\)

 \(\Leftrightarrow\chi-7=2\chi+3\)

\(\Leftrightarrow\chi-2\chi=3+7\)

\(\Leftrightarrow\chi=-10\) (KTMĐK)

Trường hợp 2:

Nếu \(\chi-7\le0\Leftrightarrow\chi\le7\)

Khi đó: \(\left|\chi-7\right|=2\chi+3\)

\(\Leftrightarrow-\chi+7=2\chi+3\)

\(\Leftrightarrow-\chi-2\chi=3-7\)

\(\Leftrightarrow-3\chi=-4\)

\(\Leftrightarrow\chi=\dfrac{4}{3}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{4}{3}\right\}\)

\(\left|\chi-4\right|=5-3\chi\)

Trường hợp 1:  

Nếu \(\chi-4\ge0\Leftrightarrow\chi\ge4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow\chi-4=5-3\chi\)

\(\Leftrightarrow\chi+3\chi=5+4\)

\(\Leftrightarrow4\chi=9\)

\(\Leftrightarrow\chi=\dfrac{9}{4}\)(KTMĐK)

Trường hợp 2: Nếu \(\chi-4\le0\Leftrightarrow\chi\le4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow-\chi+4=5-3\chi\)

\(\Leftrightarrow-\chi+3\chi=5-4\)

\(\Leftrightarrow2\chi=1\)

\(\Leftrightarrow\chi=\dfrac{1}{2}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{1}{2}\right\}\)

 

 

 

 

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Bài 1:

a. 

$(4x^2+4x+1)-x^2=0$

$\Leftrightarrow (2x+1)^2-x^2=0$

$\Leftrightarrow (2x+1-x)(2x+1+x)=0$

$\Leftrightarrow (x+1)(3x+1)=0$

$\Rightarrow x+1=0$ hoặc $3x+1=0$

$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$

b.

$x^2-2x+1=4$

$\Leftrightarrow (x-1)^2=2^2$

$\Leftrightarrow (x-1)^2-2^2=0$

$\Leftrightarrow (x-1-2)(x-1+2)=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-1$

c.

$x^2-5x+6=0$

$\Leftrightarrow (x^2-2x)-(3x-6)=0$

$\Leftrightarrow x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $x-3=0$

$\Leftrightarrow x=2$ hoặc $x=3$

 

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

2c.

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$

$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$

$\Leftrightarrow x=-4$ (tm)

2d.

ĐKXĐ: $x\neq 2$

PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$

$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$

$\Rightarrow 3x-5=3-x$

$\Leftrightarrow 4x=8$

$\Leftrightarrow x=2$ (không tm) 

Vậy pt vô nghiệm.

25 tháng 3 2022

\(\dfrac{2x-1}{x+1}=\dfrac{-2x+1}{x-5}\left(x\ne-1;5\right)\)

\(\dfrac{2x-1}{x+1}=\dfrac{2x-1}{5-x}\)

\(x+1=5-x\)

\(2x=4\Rightarrow x=2\)

a:

ĐKXĐ: \(x>=-2\)

\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)

 

Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)

Phương trình sẽ trở thành:

1+ab=a+b

=>ab-a-b+1=0

=>a(b-1)-(b-1)=0

=>(b-1)(a-1)=0

=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)

=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)

=>\(x\in\varnothing\)

b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)

TH1: x>=1/4

\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)

=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)

=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)

=>4x-1=0

=>x=1/4(nhận)

TH2: x<1/4

Phương trình (1) sẽ trở thành:

\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)

=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)

=>4x-1=0

=>x=1/4(loại)