K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2022

ủa mũ hay để nguyên z?? 

28 tháng 12 2022

mũ ạ

NV
1 tháng 9 2021

\(=\left(x^6+2x^5+x^4\right)-2\left(x^5+2x^4+x^3\right)+2\left(x^4+2x^3+x^2\right)\)

\(=x^2\left(x^2+x\right)^2-2x\left(x^2+x\right)^2+2\left(x^2+x\right)^2\)

\(=\left(x^2+x\right)^2\left(x^2-2x+2\right)\)

\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)

1 tháng 9 2021

good teacher

31 tháng 1 2018

a) x6 – x4 + 2x3 + 2x2

= x2(x4 – x2 + 2x + 2)

= x2[x2(x2 – 1) + 2(x + 1)]

= x2. [x2.(x -1).(x + 1) + 2(x+ 1)]

= x2 (x+ 1).[x2(x- 1)+ 2]

= x2(x + 1)(x3 – x2 + 2)

= x2(x + 1)[(x3 + 1) – (x2 – 1)]

= x2(x + 1).[(x + 1).(x2 – x + 1) - (x - 1).(x + 1)]

= x2(x + 1)(x + 1)( x2 – x + 1 – x + 1)

= x2(x + 1)2(x2 – 2x + 2).

b) 4x4 + y4 = 4x4 + 4x2y2 + y4 - 4x2y2

= (2x2 + y2)2 - (2xy)2

= (2x2 + y2 + 2xy)(2x2 + y2 - 2xy)

19 tháng 4 2017

Ta đặt và thực hiện phép tính P(x) + Q(x) và P(x) – Q(x) có

Giải bài 51 trang 46 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vậy: P(x) + Q(x) = – 6 + x + 2x2 – 5x3 + 2x5 – x6

P(x) – Q(x) = – 4 – x – 3x3 + 2x4 - 2x5 – x6

21 tháng 8 2018

 P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3

= – x6 + x4 + (– 3x3 – x3) + (3x2 – 2x2) – 5

= – x6 + x4 – 4x3 + x2 – 5.

= – 5+ x2 – 4x3 + x4 – x6

Và Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1

= 2x5 – x4 + (x3 – 2x3) + x2 + x –1

= 2x5 – x4 – x3 + x2 + x –1.

= –1+ x + x2 – x3 – x4 + 2x5

25 tháng 12 2018

a) (x - y)(x + y + 3).                    b) (x + y - 2xy)(2 + y + 2xy).

c) x 2 (x + l)( x 3  -  x 2  + 2).              d) (x – 1 - y)[ ( x   -   1 ) 2   +   ( x   -   1 ) y   +   y 2 ].

8 tháng 10 2017

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

a: Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\cdot\left(x+1\right)\)

b: Ta có: \(-a^4+a^3+2a^3+2a^2\)

\(=-a^2\left(a^2-a-2a-2\right)\)

c: Ta có: \(x^4+x^3+2x^2+x+1\)

\(=x^4+x^3+x^2+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^2+1\right)\)