K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

d)  Gọi M là giao điểm của HA và KI 

\(\Delta\)HKB = \(\Delta\)HIC ( theo c) 

=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )

=> ^BHA - ^BHK = ^CHA - ^CHI 

=> KHA = ^IHA hay ^KHM = ^IHM (1)

Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung 

=> \(\Delta\)IHM = \(\Delta\)KHM 

=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ 

=> ^HMK = ^HMI = 90 độ 

hay HA vuông KI 

mà HA vuông BC 

=> KI // BC

24 tháng 3 2020

A B C H

a) Xét tam giác AHB và tam giác AHC có:
AH chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)

AB=AC (tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC (đpcm)

b) Xét tam giác ABC cân tại A có AH là đường cao

=> AH trùng với đường trung tuyến 

=> H là trung điểm BC => HB=HC (đpcm)

22 tháng 1 2022

Bạn tự vẽ hình nhá.

a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:

AB = AC (gt)

AH là cạnh chung

=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )

b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )

                                                                và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )

c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)

Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:

HB = HC ( cmt )

\(\widehat{KBH}=\widehat{ICH}\)

=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )

22 tháng 1 2022

cảm ơn bạn nhé

26 tháng 3 2020

a, Xét tam giác AHB và tam giác AHC có

AB = AC ( giả thiết )

H1 = H2 ( = 90)

Ah chung

tam giác AHB = tam giác AHC ( c.g.c)

b, từ a, suy ra

- BH=HC (2 cạnh tương ứng)

- góc BAH=góc CAH (2 góc tương ứng)

c,Xét tam giác HKB và tam giác HIC có

HB = HC (từ câu b)

góc B = góc C (2 góc tương ứng)

Suy ra tam giác HKB = tam giác HIC (ch.gn)

Mik chỉ lm đc đến đây thôi còn câu d, mik ko bt lm

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Ta có: ΔABH=ΔACH

nên HB=HC và \(\widehat{BAH}=\widehat{CAH}\)

c: Xét ΔHKB vuông tại K và ΔHIC vuông tại I có

HB=HC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHKB=ΔHIC

7 tháng 3 2017

Bài 1 xét hai tam giác AHB và tam giác AHC có:

AC= AB (cân)

AH là cạnh chung

góc ABH= gó ACH 

=> hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn

bài 2 

a) ta có tam giác ABC cân 

và AH là đường cao => AH cũng là đường trung tuyến của tam giác ABC

hoặc dùng kết quả 2 tam giác bằng nhau ở câu 1 để suy ra cũng dc

b)từ kết quả baì 1  suy ra hai góc bằng nhau

ta có tam giác ABH vuông tại H

HB=HC+1/2BC=5

sử dụng pytago

AH2  = AB2- BH2

13 tháng 4 2020

a/

*Cách 1:

Ta có: ΔABC cân tại A

=> AC = AB

Và: \(\widehat{ABC}=\widehat{ACB}\)

Hay: \(\widehat{ABH}=\widehat{ACH}\)

Xét 2 tam giác vuông ΔAHB và ΔAHC có:

AB = AC (cmt)

\(\widehat{ABH}=\widehat{ACH}\) (cmt)

Do đó: ΔAHB = ΔAHC (c.h - g.n)

*Cách 2:

Xét ΔAHB và ΔAHC có:

AB = AC (ΔABC cân tại A)

AH: cạnh chung

=> ΔAHB = ΔAHC (c.h - c.g.v)

b) Có: ΔAHB = ΔAHC (câu a)

=> HB = HC (2 cạnh tương ứng)

Và: \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Xét 2 tam giác vuông ΔEBH và ΔFCH ta có:

Cạnh huyền HB = HC (câu b)

\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A)

=> ΔEBH = ΔFCH (c.h - g.n)

d) Sửa đề: EF // BC

Có: ΔEBH = ΔFCH (câu c)

=> EB = FC (2 cạnh tương ứng)

Có: \(\left\{{}\begin{matrix}AE+BE=AB\\AF+FC=AC\end{matrix}\right.\)

Mà: EB = FC (cmt) và AB = AC (ΔABC cân tại A)

=> AE = AF

=> ΔAEF cân tại A

=> \(\widehat{AEF}=\frac{180^0-\widehat{BAC}}{2}\) (1)

Có: ΔABC cân tại A

=> \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\) (2)

Từ (1) và (2) => \(\widehat{ABC}=\widehat{AEF}\)

Mà 2 góc này lại là 2 góc đồng vị

=> EF // BC