K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Nếu có bạn nào trả lời thì ngoài t.i.c.k đúng tớ còn pải làm thế nào để 'chọn câu trả lời này'??

24 tháng 3 2020

Gọi d là ƯCLN (2n+1;2n+3) (d thuộc N*)

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d

Mà d thuộc N* => d={1;2}

Ta có 2n+1 không chia hết cho 2 và 2n+3 không chia hết cho 2

=> d=1

=> đpcm

14 tháng 4 2017

2n+1/2n(2n+1)

=1/2n

=> đó là phân số tối giản

15 tháng 4 2017

a, \(A=\frac{a^3+a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+a\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b, Gọi ƯCLN(a2 + a - 1,a2 + a + 1) là d

=> a2 + a - 1 chia hết cho d

    a2 + a + 1 chia hết cho d

=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d

=> 2 chia hết cho d

=> d = {1;2}

Mà a2 + a - 1 = a(a + 1) - 1 là số lẻ nên d là số lẻ

=> d khác 2

=> d = 1

Vậy A là phân số tối giản (đpcm)

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

AH
Akai Haruma
Giáo viên
17 tháng 4 2022

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

24 tháng 3 2016

a. Muốn phân số n+1/2n+3 tối giản thì n+1 và 2n+3 có ƯCLN=1

Giả sử n+1 và 2n+3 có ước là a

=>n+1 chia hết cho a và 2n+3 chia hết cho

=>2(n+1) chia hết cho a và 2n+3 chia hết cho a

=>2n+2 chia hết cho a và 2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=> 1 chia hết cho a hay a thuộc Ư(1) = {1}

Vậy phân số n+1/2n+3 tối giản

Bây giờ mk bận, tối về giải tiếp nhé

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

28 tháng 2 2024

1.    a. Tính :

1.    a. Tính :

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

22 tháng 11 2016

Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:

       n^3 + 2n chia hết cho d =>  n(n^3 + 2n) chia hết cho d =>   n^4 + 2n^2 chia hết cho d (1)

       n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d  => (n^2 + 1)^2  =  n^4 + 2n^2 + 1 chia hết cho d  (2)

 Từ (1) và (2) suy ra :     

                                               (n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d  =>  1 chia hết cho d => d=+-1

   Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1

22 tháng 11 2016

Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau . 

Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa . 

Vậy không thể rút gọn và phân số này đã tối giản