K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCKlà hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

21 tháng 12 2021

a: Xét tứ giác AMCK có 

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

5 tháng 11 2017

bạn có chép lộn đề ko vậy

5 tháng 11 2017

a) xét tứ giác AKCM ta có:

IA=IC

IK=IM

=> tứ giác AKCM là hình bình hành ( hai đg chéo cắt nhau tại trg điểm mỗi đg)

mà góc M bằng 90 ( AM là đg phân giác)

=> tứ giác AKCM là hình chữ nhật

b)ta có AK//MC ; AK=MC (cmt)

mà MC=MB 

=> AK//BM ; AK=BM

=> tứ giác AKBM là hình bình hành

c)

AKCM là hình vuông

=>AM=MC

BM=MC=1/2BC

=>AM=1/2BC

=> tam giác ABC vuông cân tại A

BẠN TỰ VẼ HÌNH NHÉ

a: Xét tứ giác AMCK có

I là trung điểm của AC
I là trung điểm của MK

Do đó:AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

hay ΔABC vuông tại A

19 tháng 7 2015

a )  Xét tam giác ABC ta có

AM = MB ( gt )

AN = NC ( gt )

suy ra MN là đường trung bình của tam giác ABC

b ) tứ giác BCKM là hình bình hành

Vì MK = 2 MN ( gt) 

BC = 2 MN 

suy ra MK = MN 

mà MK // MN 

nên tứ giác BCKM là hình bình hành

c ) Xét tam giác NMC và tam giác NKA , có

góc MNC = góc KNA ( đối đinh )

NM = NK

NA=NC

suy ra tam giác NMC = tam giác NKA ( c.g.c)

suy ra góc CMN = góc AKN ( 2 góc tương ứng )

mà 2 góc nằm ở vị trí so le trong nên AK // MC

mà  AK = MC ( 2 cạnh tương ứng )

suy ra tứ giác AKCM là hình bình hành

d) tam giác ABC là tam giác đều thì tứ giác AKCM là hình chữ nhật

26 tháng 1 2022

a) Xét tứ giác AMCK:

I là trung điểm của AC (gt).

I là trung điểm của MK (K là điểm đối xứng với M qua I).

Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)

=> Tứ giác AMCK là hình chữ nhật (dhnb).

b) Xét tam giác ABC cân tại A: AM là đường cao (gt).

=> AM là trung tuyến (Tính chất tam giác cân).

=> M là trung điểm của BC.

=> BM = MC.

Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).

          BM = MC (cmt).

=> AK = MC = BM.

Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).

=> AK // BM.

Xét tứ giác AKMB:

AK // BM (cmt).

AK /= BM (cmt).

=> Tứ giác AKMB là hình bình hành (dhnb).

c) Tứ giác AMCK là hình vuông (gt).

=> AK = AM (Tính chất hình vuông).

Mà AK = BM (cmt).

=> AM = BM = AK.

Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).

=> AM = BM = AK = \(\dfrac{1}{2}\) BC.

Xét tam giác ABC cân tại A: 

AM = \(\dfrac{1}{2}\) BC (cmt).

=> Tam giác ABC vuông cân tại A.