1 cho tam giác ABC cân tại A, phân giác AM, gọi I là trung điểm AC, K là điểm đối xứng với M qua I
a/ CM: tứ giác AKCM là hcn
b/ tìm điều kiện của tam giác ABC để tứ giác AKCM là hình vòng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCKlà hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a) xét tứ giác AKCM ta có:
IA=IC
IK=IM
=> tứ giác AKCM là hình bình hành ( hai đg chéo cắt nhau tại trg điểm mỗi đg)
mà góc M bằng 90 ( AM là đg phân giác)
=> tứ giác AKCM là hình chữ nhật
b)ta có AK//MC ; AK=MC (cmt)
mà MC=MB
=> AK//BM ; AK=BM
=> tứ giác AKBM là hình bình hành
c)
AKCM là hình vuông
=>AM=MC
BM=MC=1/2BC
=>AM=1/2BC
=> tam giác ABC vuông cân tại A
BẠN TỰ VẼ HÌNH NHÉ
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó:AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
hay ΔABC vuông tại A
a ) Xét tam giác ABC ta có
AM = MB ( gt )
AN = NC ( gt )
suy ra MN là đường trung bình của tam giác ABC
b ) tứ giác BCKM là hình bình hành
Vì MK = 2 MN ( gt)
BC = 2 MN
suy ra MK = MN
mà MK // MN
nên tứ giác BCKM là hình bình hành
c ) Xét tam giác NMC và tam giác NKA , có
góc MNC = góc KNA ( đối đinh )
NM = NK
NA=NC
suy ra tam giác NMC = tam giác NKA ( c.g.c)
suy ra góc CMN = góc AKN ( 2 góc tương ứng )
mà 2 góc nằm ở vị trí so le trong nên AK // MC
mà AK = MC ( 2 cạnh tương ứng )
suy ra tứ giác AKCM là hình bình hành
d) tam giác ABC là tam giác đều thì tứ giác AKCM là hình chữ nhật
a) Xét tứ giác AMCK:
I là trung điểm của AC (gt).
I là trung điểm của MK (K là điểm đối xứng với M qua I).
Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)
=> Tứ giác AMCK là hình chữ nhật (dhnb).
b) Xét tam giác ABC cân tại A: AM là đường cao (gt).
=> AM là trung tuyến (Tính chất tam giác cân).
=> M là trung điểm của BC.
=> BM = MC.
Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).
BM = MC (cmt).
=> AK = MC = BM.
Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).
=> AK // BM.
Xét tứ giác AKMB:
AK // BM (cmt).
AK /= BM (cmt).
=> Tứ giác AKMB là hình bình hành (dhnb).
c) Tứ giác AMCK là hình vuông (gt).
=> AK = AM (Tính chất hình vuông).
Mà AK = BM (cmt).
=> AM = BM = AK.
Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).
=> AM = BM = AK = \(\dfrac{1}{2}\) BC.
Xét tam giác ABC cân tại A:
AM = \(\dfrac{1}{2}\) BC (cmt).
=> Tam giác ABC vuông cân tại A.