Cho x, y >0
Tìm Min A = x/y + y/x +xy/ x² + y²
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)
\(\Rightarrow-4\le x+y\le-2\)
\(\Rightarrow2016\le B\le2018\)
\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)
\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)
\(A=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2xy}{x-y}=x-y+\dfrac{2}{x-y}>=2\sqrt{2}\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\y=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
A=x3+y3=(x+y)(x2-xy+y2)
=(x+y)2\(\ge\)0
Dấu "=" xảy ra khi x=-y
\(A=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
\(A=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
\(A=\frac{3}{4}\cdot\frac{x^2+y^2}{xy}+\frac{x^2+y^2}{4xy}+\frac{xy}{x^2+y^2}\) (1)
+ có : \(\left(x-y\right)^2\ge0\forall x;y\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Rightarrow\frac{x^2+y^2}{xy}\ge2\) mà x;y > 0
\(\Rightarrow\frac{3}{4}\cdot\frac{x^2+y^2}{xy}\ge\frac{3}{2}\) (2)
có : \(x^2+y^2>0;xy>0\)
nên \(\frac{x^2+y^2}{4xy}>0;\frac{xy}{x^2+y^2}>0\)
áp dụng bđt Cô si ta có :
\(\frac{x^2+y^2}{4xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{x^2+y^2}{4xy}\cdot\frac{xy}{x^2+y^2}}\)
\(\Rightarrow\frac{x^2+y^2}{4xy}+\frac{xy}{x^2+y^2}\ge1\) (3)
(1)(2)(3) \(\Rightarrow A\ge\frac{3}{2}+1\Rightarrow A\ge\frac{5}{2}\)
\(A=\frac{5}{2}\) khi \(\hept{\begin{cases}x=y\\\frac{x^2+y^2}{4xy}=\frac{xy}{x^2+y^2}\end{cases}\Leftrightarrow x=y>0}\)